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ABSTRACT 

A curved tubular flange girder (TFG) is an innovative curved steel I-shaped girder 

for highway bridges. The cross section of a TFG combines the flexurally-efficient open 

cross section of an I-girder with the closed cross section of a tube. A TFG has a steel tube 

as the top flange and either a steel tube or a flat steel plate as the bottom flange. TFGs are 

easy to fabricate and have a much greater torsional stiffness and strength than 

conventional curved I-girders.  

The curved TFGs studied here have a hollow-structural-section as the top flange 

and a flat steel plate as the bottom flange. A 2/3-scale test specimen with two curved 

TFGs braced by diaphragms has been designed, fabricated, and erected. Finite element 

(FE) models of the test specimen were developed by Ma and the FE results from these 

models were used in the present study.  

This thesis presents the test setup, and the FE analyses of the loading and the 

kinematics of the test specimen response. The thesis also describes how the FE results 

were used to design the loading fixtures for the tests. The test setup includes the test 

specimen, the bearings and the footings, the ground anchor rods used to react the loads, 

and the loading fixtures. A description of the location and layout of test setup is included 

and the design of the test specimen is explained. Information on the TFGs, the stiffeners, 

the diaphragms, and the diaphragm to TFG connections is presented. The bearings and 

the footings are described, followed by information on the ground anchor rods.  
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The design of the loading fixtures, explained in this thesis, attempts to minimize 

the restraint of the test specimen and maintain stability of the loads as the test specimen 

displaces. Four different types of loading fixtures were designed to accommodate the 

geometry of the test specimen and the expected displacements of the test specimen based 

on the FE results. Seven loading fixtures are required to load the test specimen with 14 

concentrated loads that produce load effects at mid-span similar to those of an idealized 

uniformly distributed load over the span. The idealized uniformly distributed load was 

selected to simulate actual loading conditions for a curved steel girder bridge. 

With each loading fixture, two assemblies, each comprised of a hydraulic jack and 

a series of steel plates, half-rounds, and steel rods, will pull down on a wide flange beam 

above the test specimen, and pull up on a pair of laced channels below the test specimen. 

The wide flange beam will bear down on the test specimen through two assemblies 

consisting of steel components, which include plates, half-rounds, and hollow-structural-

sections. The channels will be anchored by the ground anchor rods that will resist the 

upward force.   
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CHAPTER 1: INTRODUCTION 

1.1. Overview 

Horizontally curved bridges with steel girders are frequently used in highway 

systems. The horizontal curvature produces significant torsional effects in the bridge 

girder system. The steel girders are often I-shaped steel plate girders (I-girders) although 

box-shaped girders are also used. I-girders are effective in a curved bridge system when 

they are connected by diaphragms or cross-frames. However, due to the open cross 

section, an individual curved I-girder is torsionally flexible and weak, which makes 

transportation and erection of individual curved I-girders challenging. For example, 

temporary supports may be required during erection to stabilize the I-girders until the 

diaphragms (or cross-frames) are installed and the I-girder framing system is established. 

After the I-girder framing system is established, the diaphragms (or cross-frames) and the 

I-girders work together to resist the torsional effects.  

Fan (2007) and Dong and Sause (2010a, b) proposed an innovative curved steel I-

shaped girder, which has a tube-shaped flange, to take advantage of the torsional stiffness 

and strength of a closed cross section (the tube). This girder is called a curved tubular 

flange girder (TFG). The cross section of a TFG combines the flexurally-efficient open 

cross section of an I-girder with the closed cross section of a tube. An I-shaped TFG has a 

steel tube as the top flange and either a steel tube or a flat steel plate as the bottom flange. 

TFGs are easy to fabricate and have a much greater torsional stiffness and strength than 

conventional I-girders.  
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The curved TFGs studied here have a cross section with a hollow rectangular steel 

tube (i.e., a hollow-structural-section or HSS) as the top flange and a flat steel plate as the 

bottom flange. A 2/3-scale test specimen with two curved TFGs braced by three internal 

diaphragms and two end diaphragms has been designed, fabricated, and erected. The 

design of the test specimen was completed by Ma (2012) and Putnam (2011). The design 

used the American Association of State Highway and Transportation Officials 

(AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications 

(2005) and design recommendations by Dong (2008). Finite element (FE) models of the 

test specimen were developed by Ma (2012) and the FE results from these models were 

used in the present study. This thesis explains the tests to be conducted on this test 

specimen and the test setup.  

The test setup includes the test specimen, the bearings and the footings, the 

ground anchor rods used to react the loads, and the loading fixtures. The bearings were 

designed by Putnam (2011) and the footings are from previous tests on straight TFGs. 

The design and installation of the ground anchor rods in the test area were managed by 

Putnam (2011). The requirements of the loading fixtures and the design of the loading 

fixtures are explained in Chapter 4 and Chapter 5 of this thesis, respectively.  

The loading fixture design used specifications from the American Institute of 

Steel Construction (AISC) Steel Construction Manual (2005) and AASHTO LRFD 

Bridge Design Specifications (2005). Four different types of loading fixtures were 

designed to accommodate the geometry and expected displacements of the test specimen. 

The design of the loading fixtures attempts to minimize the restraint of the test specimen 
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and maintain stability of the loads as the test specimen deforms. Seven loading fixtures 

are required to load the test specimen with 14 concentrated loads that produce load 

effects at mid-span similar to those of an idealized uniformly distributed load over the 

span. The idealized uniformly distributed load was selected to simulate actual loading 

conditions for a curved steel girder bridge. 

1.2. Research Objectives 

The overall goal of this research is to synthesize information on the test specimen, 

the test setup, and the required loading conditions, and to develop and design the method 

of loading the test specimen. To do this, the following objectives are established: 

1. To gather and synthesize information on the test specimen and the test 

setup  

2. To study the effects of different possible load patterns on the response of 

the test specimen using FE model results 

3. To study the displacements of the test specimen under loads using FE 

model results 

4. To develop the method of loading the test specimen and design the loading 

fixtures  

1.3. Report Scope 

 To achieve these objectives, information on the test specimen, the expected test 

specimen behavior, and the test setup was gathered from previous work done by Dong 
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(2008), Putnam (2010, 2011), and Ma (2012), and other sources. Different loading cases 

were studied using FE results to determine if multiple concentrated loads could produce 

the required load effects. The FE displacement results for the test specimen were 

examined. The load and kinematic results were used to design the loading fixtures.  

1.4. Organization of Thesis 

This thesis consists of six chapters: 

Chapter 1 introduces the research with a general overview, the research 

objectives, and the organization of the thesis. 

Chapter 2 presents background information on previous and current research 

involving straight and curved TFGs. 

Chapter 3 presents an explanation of the test setup including information on the 

design of the test specimen, the TFGs, the TFG stiffeners, the diaphragms, the 

connections of the diaphragms to the TFGs, the bearings and the footings, and the ground 

anchor rods. 

Chapter 4 presents FE study results for the test specimen under different load 

patterns and the resulting loads and displacements. The basis for the selected test loading 

condition for the test specimen is explained. The displacements of the test specimen from 

the FE analyses, the effect of boundary conditions on the FE results, and the 

displacements used to design the loading fixtures are discussed. 
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Chapter 5 presents the design of the loading fixtures. It includes an explanation of 

the design loads, the stability concerns taken into consideration, and the designs of the 

components of the loading fixtures, including the demands and the capacities for each 

component.  

Chapter 6 presents a summary of the thesis, conclusions, and possible future 

work. 
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CHAPTER 2: BACKGROUND 

2.1. Introduction 

Tubular flange girders (TFG) with different cross sections (shown in Figure 2.1) 

have been studied and compared with conventional steel I-girders. The previous studies 

involved theoretical, analytical, and experimental research. TFGs for straight bridges are 

discussed in Section 2.2. TFGs for curved bridges are discussed in Section 2.3 through 

Section 2.6: Section 2.3 presents the theoretical studies; Section 2.4 presents the studies 

on individual curved TFGs with two hollow steel tube flanges; Section 2.5 presents the 

studies on systems of curved TFGs with two hollow steel tube flanges; and Section 2.6 

presents the studies on systems of curved TFGs with a hollow steel tube as the top flange 

and a flat steel plate as the bottom flange. 

2.2. Straight TFGs 

Steel girders with tubular flanges filled with concrete were first proposed by 

Wassef et al. (1997) for straight highway bridges. Increased local buckling resistance, 

large torsional stiffness, and reduced web slenderness were identified as potential 

advantages of these girders. A study of straight concrete-filled TFGs was conducted by 

Wimer and Sause (2004). The two-TFG test specimen studied is shown in Figure 2.2. 

The straight concrete-filled TFGs had a rectangular steel tube as the top (compression) 

flange and a flat steel plate as the bottom (tension) flange. The large torsional stiffness of 

the straight concrete-filled TFG allows for large unbraced lengths and fewer diaphragms 

(or cross-frames) in a TFG bridge framing system.  
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The test specimen (Wimer and Sause, 2004) was fabricated and tested at a 0.45 

scale. The tests were conducted at the Advanced Technology for Large Structural 

Systems (ATLSS) Engineering Research Center at Lehigh University in Bethlehem, PA. 

The location of the test setup of the present research is the same as the location of the test 

setup for the test specimen studied by Wimer and Sause (2004). The tests by Wimer and 

Sause (2004) examined the test specimen for two conditions: (1) TFGs non-composite 

with a concrete deck when the lateral-torsional buckling (LTB) strength controls the 

flexural capacity and (2) TFGs composite with a concrete deck when the TFG cross 

section flexural strength controls the flexural capacity. The test specimen was loaded 

with precast concrete deck panels and additional concrete blocks (see Figure 2.3) to reach 

the factored design loads based on the 1998 AASHTO Load and Resistance Factor 

Design (LRFD) Bridge Design Specifications. The straight concrete-filled TFGs carried 

their design loads. The maximum load capacity of the test specimen could not be 

validated because the test specimen could not safely be loaded to the maximum load 

capacity.  

Kim and Sause (2005a, b) studied straight concrete-filled TFGs with a round steel 

tube as the top flange and a flat steel plate as the bottom flange (Figure 2.4). A four-

girder, simply supported bridge prototype was designed to develop design flexural 

strength formulas for TFGs considering LTB and cross section yielding. These equations 

were calibrated to finite element (FE) analysis results. The details are summarized in 

Sause (2012). The prototype bridge was designed for strength, stability, service, and 

fatigue design criteria. Compared with corresponding minimum weight conventional steel 
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I-girders, the straight concrete-filled TFGs require less steel and fewer diaphragms, 

which reduces fabrication and erection efforts.  

Kim and Sause (2005a, b) designed a 0.45-scale test specimen with two straight 

TFGs with round concrete-filled steel tubes as the top flanges. The test specimen with 

non-composite TFGs (see Figure 2.5) was tested for two conditions: (1) construction 

conditions when the LTB strength controls the flexural capacity and (2) service 

conditions when the TFG cross section flexural strength controls the flexural capacity. 

The test specimen was loaded with a concrete deck and additional concrete and steel 

blocks. For the construction conditions, the TFGs were not braced by the concrete deck, 

but for the service conditions, the TFGs were braced by the concrete deck. The test 

specimen carried loads exceeding the factored design loads for both conditions. No 

unexpected lateral or vertical displacements occurred. The experimental results were 

compared with FE analysis results, which indicated that the behavior of the test specimen 

could be estimated accurately with FE models. 

Dong and Sause (2009) studied straight TFGs with hollow, rectangular steel tubes 

for both flanges. An FE parametric study was conducted. The study showed the effects of 

stiffeners, cross section dimensions, residual stresses, initial geometric imperfections, and 

bending moment distribution on the LTB flexural strength of straight TFGs. The study 

was used to validate the flexural strength formulas developed by Kim and Sause (2005a, 

b). 
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2.3. Theoretical Work on Curved TFGs 

Fan (2007) extended the work on single curved girders with either an open cross 

section or a closed cross section by Dabrowski (1968) to curved TFGs. Linear elastic 

theoretical analysis methods for single curved TFGs and multiple curved TFGs braced by 

cross-frames were developed. A parametric study of the tube width and depth, the cross 

section depth, and the girder curvature on individual curved TFGs and on curved TFG 

systems was completed. A parametric study of the number of cross-frames in curved TFG 

systems was also done. The behavior of curved TFG systems was compared with the 

behavior of corresponding curved I-girder systems. 

FE models were developed (Fan, 2007) to verify the theoretical analysis methods. 

FE analyses of a curved TFG bridge framing system (girders and cross-frames) under 

dead load and FE analyses of a curved TFG bridge framing system with a composite 

concrete deck under dead load and live load was conducted. Curved TFGs have smaller 

warping normal stress and cross section rotation than corresponding curved I-girders, 

especially for individual girders. The cross-frames in a curved TFG system can be lighter 

than the cross-frames in a corresponding curved I-girder system because the cross-frame 

forces are smaller. A curved TFG system and corresponding curved I-girder system, both 

with a composite concrete deck, have similar behavior. However, fewer cross-frames are 

required in the curved TFG system than the corresponding curved I-girder system. 
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2.4. Individual Curved TFGs with Two Hollow Tube Flanges 

Dong and Sause (2010a, b) studied curved TFGs with hollow rectangular steel 

tubes for both flanges. FE studies were done on individual girders and simply supported 

three-girder systems of curved hollow TFGs and conventional I-girders. For the 

comparative studies, the curved hollow TFGs and I-girders had the same weight, depth, 

and flange width. The span, L, was held constant and the radius of curvature, R, was 

varied to produce different L/R ratios between 0.1 and 0.45 to study torsional effects.  

A study of an individual curved hollow TFG was done to determine the effects of 

cross section distortion, stiffeners, tube diaphragms, and cross section dimensions on the 

load capacity (Dong and Sause, 2010a). The FE model is shown in Figure 2.6. Cross 

section distortion reduces the load capacity, but the use of stiffeners and diaphragms in 

the tubes mitigate the cross section distortion. In addition, second-order effects, initial 

geometric imperfections, and residual stresses were considered. Initial geometric 

imperfections and residual stresses did not have a large effect on the load capacity.  

A comparative study (Dong and Sause, 2010a) of individual girders under self-

weight demonstrated that the curved hollow TFG develops less warping normal stress 

due to the larger torsional rigidity, smaller vertical displacements, and smaller cross 

section rotations than a corresponding I-girder. The I-girder has less primary bending 

stress due to the slightly larger flexural rigidity. However, the curved hollow TFG has a 

smaller maximum total longitudinal normal stress than the I-girder because the I-girder 

has much larger warping normal stress. The study showed that while individual curved I-
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girders would require temporary support during erection, individual curved hollow TFGs 

may not. 

Putnam (2010) studied a 1/2-scale individual curved hollow TFG test specimen 

(see Figure 2.7). Putnam used the test results to validate FE models. The behavior of the 

curved hollow TFG under vertical loads was examined and the results showed that an FE 

model can accurately predict vertical displacements, cross section rotations, normal 

strains, and shear strains away from the ends of the curved hollow TFG. A parametric 

study of the end conditions and the shear strains near the ends of the curved hollow TFG 

was conducted considering internal steel tube diaphragms and concrete infill. The end 

conditions had a significant effect on the shear strains and the values depended on the 

method of stiffening used, the location of the internal diaphragm, and the extent to which 

the concrete infill extended. The results were compared to the theoretical analysis 

methods developed by Fan (2007). 

2.5. Curved Systems of TFGs with Two Hollow Tube Flanges 

FE analyses were conducted by Dong and Sause (2010b) on three-girder systems 

of curved hollow TFGs (Figure 2.8). The systems were compared with three-girder 

systems of curved I-girders. The horizontal curvature, cross section dimensions, number 

of cross-frames, and inclusion of composite action with the concrete deck were varied. 

The small reduction in load capacity due to initial geometric imperfections and residual 

stresses was neglected. The three-girder systems were loaded with a vertical, uniformly 

distributed load over the span. Two main loading conditions were considered. The first 
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loading condition was loading of the girder system (without a composite concrete deck) 

during construction of the deck. The second loading condition was loading of the girder 

system with a composite deck in its final constructed condition. 

The curved hollow TFGs in the three-TFG system had a smaller maximum total 

normal stress than the corresponding I-girders in the three-I-girder system (Dong and 

Sause, 2010b). The vertical displacements of both three-girder systems were similar. The 

maximum cross-frame force in the I-girder system was much greater than the maximum 

cross-frame force in the TFG system. The three-girder systems with a composite concrete 

deck had an increased stiffness and load capacity, and a decreased maximum normal 

stress, vertical displacement, and maximum cross-frame force. The load capacity of the 

TFG system was similar to the load capacity of the I-girder system.  

Dong (2008) adapted the design criteria from the 2004 AASHTO LRFD Bridge 

Design Specifications for conventional curved I-girders to curved hollow TFGs. 

Constructability, Service II, and Strength I limit states were considered. The FE results 

showed that these equations could be used to safely design curved hollow TFGs for 

highway bridges. 

The advantages of a curved hollow TFG system in comparison to a corresponding 

curved I-girder system are summarized by Sause (2012) as follows: 

 Under the same load, the TFGs develop less total normal stress 

than the corresponding curved I-girders. 
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 The forces in the cross-frames of the TFG systems are smaller than 

in the corresponding I-girder systems, and thus lighter cross-frame 

members could be used for the TFG systems. 

 Fewer cross-frames are needed for the TFG systems. 

 The TFG systems can carry their own weight (plus the weight of a 

concrete deck) without any support within the span and without 

interior cross-frames, and, therefore, temporary support for the 

TFG systems during construction (before the concrete deck is 

composite with the girders) may not be needed, which makes 

bridge erection faster and less expensive. 

2.6. Test Specimen for Curved TFGs with Single Hollow Tube Top Flange 

Tests on a large-scale test specimen were needed to validate the FE results and 

design criteria equations developed by Dong (2008). The bottom tubular flange in the 

TFGs studied by Dong (2008) was eliminated because concrete infill or internal 

diaphragms would be required to resist bearing from the reactions. In addition, Dong 

(2008) found that available hollow-structural-sections (HSS) were not adequate for the 

bottom flange and a cover plate might be needed to increase the flexural strength of the 

section. Therefore, curved TFGs with a rectangular hollow steel tube as the top flange 

and a flat steel plate as the bottom flange were developed by Ma (2012).  

A 2/3-scale test specimen with two curved hollow TFGs braced by three 

intermediate diaphragms was designed (Ma, 2012; Putnam, 2011), fabricated, and erected 
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(see Figure 2.9). FE models of the test specimen were developed (Ma, 2012) to validate 

the design criteria developed by Dong (2008) for Constructability, Service II, and 

Strength I limit states (AASHTO, 2005), and to determine the load capacity of the test 

specimen. The test specimen and the corresponding test setup are described in Chapters 

3, 4, and 5 of this thesis. 

Further research on curved hollow TFGs and curved hollow TFG systems is 

underway (Ma, 2012). Additional curved hollow TFG systems are being designed and 

studied with FE models. The FE models are being used to conduct parametric studies on 

the erection process of the TFG systems, which includes installation of the diaphragms or 

cross-frames.   
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Figure 2.1: Tubular flange girders (Sause, 2012) 

 

 

 

Figure 2.2: Straight TFGs with concrete-filled rectangular steel tube top flange 

(Wimer and Sause, 2004) 
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Figure 2.3: Straight concrete-filled rectangular steel tube TFG test specimen with 

concrete deck and loading blocks during testing (Sause, 2012) 

 

 

 

Figure 2.4: Straight TFGs with concrete-filled round steel tube top flange (Kim and 

Sause, 2005a, b) 
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Figure 2.5: Straight concrete-filled round steel tube TFG test specimen with 

concrete deck and loading blocks during testing (Kim, 2005) 

 

 

Figure 2.6: FE model of individual curved TFG with two hollow tube flanges (Sause, 

2012) 

 

 



www.manaraa.com

20 

 

 

Figure 2.7: Curved TFG with hollow steel tube flanges and concrete infilled ends 

(Putnam, 2010) 

 

 

Figure 2.8: FE model of curved system of TFGs with two hollow tube flanges (Sause, 

2012) 
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Figure 2.9: Curved TFG with hollow steel tube top flange (Sause et al., 2009) 
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CHAPTER 3: TEST SETUP AND TFG TEST SPECIMEN DESIGN 

3.1. Introduction 

This chapter provides an overview of the test setup and the 2/3-scale TFG test 

specimen design. It discusses the geometry and layout of the test setup, the design of the 

test specimen, the components of the test specimen including the girders, stiffeners, and 

diaphragms, the bearing and the footings, and the ground anchor rods that will be used to 

react the applied loads. 

3.2. Test Setup Location and Layout 

The location for the tests is at the Advanced Technology for Large Structural 

Systems (ATLSS) Engineering Research Center at Lehigh University in Bethlehem, PA. 

The location of the test setup, shown in Figure 3.1, is outside, directly north of the 

building. The area used by the test setup is approximately 80 ft long and 35 ft wide and 

encompasses the girders, bearings, footings, and ground anchor rods. Figure 3.2 is a plan 

view of the test setup area showing the test setup.  

The test setup is singly symmetric about the mid-span of the test specimen. Seven 

parallel cross sections of four types divide up the test specimen. Section A is located at 

mid-span, Section B is 7.5 ft away from mid-span, Section C is 15 ft away from mid-

span, and Section D is 22.5 ft away from mid-span. Section B, Section C, and Section D 

are each used at two cross sections located symmetrically about mid-span: one is to the 

east of Section A and one is to the west of Section A. To differentiate between the two 
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locations, a subscript of “E” or “W” has been added to denote the east cross section and 

west cross section, respectively. 

Two coordinate systems are used to describe the test setup. The first coordinate 

system is a cylindrical coordinate system, which corresponds to the geometry of the test 

specimen. The curved test specimen can be described in terms of a circumferential plane 

along the centerline of the test specimen, and radial planes perpendicular to the 

circumferential plane. The second coordinate system is a Cartesian coordinate system, 

which corresponds to the test setup area. The parallel planes of the test setup area are in 

the north-south direction and the longitudinal planes of the test setup area are in the east-

west direction. The vertical direction is the same for both coordinate systems and is 

parallel to the direction of gravity.  

Section D has the largest angular difference between the parallel plane and the 

radial plane. Figure 3.3 shows an enlarged plan view of Section DE. This figure shows 

linear dimensions between the centerline of the individual TFGs, the centerline of the test 

specimen, and the centerlines of the ground anchor rods, as well as the angle and the arc 

length along the TFG centerlines between the two planes.   

3.3. TFG Test Specimen Design 

The test specimen is 2/3-scale, and is based on a full-scale TFG bridge designed 

by Haiying Ma and Eric Putnam in 2009. The TFG bridge design was based on 

recommendations by Dong (2008) and used the AASHTO Load and Resistance Factor 

Design (LRFD) Bridge Design Specifications Customary U.S. Units, 2005 Interim 
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Revisions (AASHTO, 2005) as well as information from the American Welding Society 

(AWS) Bridge Welding Code D1.5 (AWS, 1988) and the American Institute of Steel 

Construction (AISC) Steel Construction Manual (AISC, 2005). Ma and Putnam used the 

following steps to design the 2/3-scale test specimen: 

1. Design a full-scale two-girder curved TFG bridge using AASHTO LRFD 

Specifications (AASHTO, 2005) with recommendations by Dong (2008) 

for the design of the TFGs including the tube, flange, web, and length of 

the TFGs 

2. Scale the dimensions of the full-scale TFG bridge down to obtain a 2/3-

scale TFG bridge design  

3. Adjust the original 2/3-scale TFG bridge design dimensions to practical 

dimensions based on available steel plate thickness and tube sizes 

4. Load the practical 2/3-scale TFG bridge with scaled loads to check 

compliance of the responses with the AASHTO LRFD Specifications 

(2005) and recommendations by Dong (2008) 

5. Scale up the dimensions of the practical 2/3-scale TFG bridge by 3/2 to 

get a new full-scale TFG bridge design 

6. Develop an FE model for the new full-scale TFG bridge in ABAQUS, 

apply the full-scale loads to the model, and check compliance of the full-

scale TFG bridge responses with the AASHTO LRFD Specifications 

(2005) and recommendations by Dong (2008)  
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7. Model the practical 2/3-scale TFG bridge in ABAQUS, apply scaled loads 

to the model, and compare the practical 2/3-scale TFG bridge responses 

with the full-scale TFG bridge responses 

The responses of the practical 2/3-scale TFG bridge were similar to the responses 

of the full-scale TFG bridge as intended. Therefore, the practical 2/3-scale TFG bridge 

design was considered to be acceptable and used for the test specimen design.  

Proper scale factors and associated loading were used to ensure that the stress in 

the reduced-scaled specimen would be equal to the stress in a full-scale specimen. 

Putnam conducted an analysis on an arbitrary beam under its self-weight to study the 

correct scale factors. This process is explained in Section 3.4 of Putnam (2010). The scale 

factors for the properties of a beam are given in Table 3.1 where λ is the scale factor for 

the reduced-scale model. The analysis results for a scaled beam with the same stresses 

under a uniform self-weight load are given in Table 3.2. As explained by Putnam (2010): 

“Column 2 of [Table 3.2] shows the ratio of the reduced-scale to full-scale 

analysis results for self-weight per unit length, shear force, moment, stress, 

strain, shear flow, and displacement for the arbitrary scaled beam loaded 

with a single increment of self-weight… Column 3 of [Table 3.2] shows 

the ratio of the reduced-scale to full-scale analysis results for the arbitrary 

scaled beam loaded to 1/λ increments of self-weight. For a specimen 

loaded to 1/λ increments of self-weight, the ratio of the reduced-scale 

stress and strains to the full-scale stresses and strains is 1.0.” 

Therefore, the 2/3-scale TFG specimen has to be loaded with 1/λ = 3/2 of the 2/3-scale 

self-weight to have the same stresses as the full-scale TFG specimen under the full-scale 

self-weight.  
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The results from Table 3.2 were used to scale down the design loads of the full-

scale TFG bridge to appropriate values for the 2/3-scale TFG bridge. A summary of the 

applied loads for the full-scale TFG bridge and 2/3-scale TFG bridge is given in Table 

3.3. This table includes a description of the loads from the AASHTO LRFD Bridge 

Design Specifications (2005) considered in the design process; a description of the values 

for the loads applied to the full-scale TFG bridge; and a description of the values for the 

scaled loads applied to the 2/3-scale TFG bridge.  

Figure 3.4 is a cross section view of the full-scale TFG bridge designed by Ma 

and Putnam. The design took into consideration the limit states for Constructability, 

Service II, and Strength I; Section 4.2 describes the loading for these limit states in more 

detail. The two-girder bridge was assumed to be a single-lane highway ramp with one 

lane of traffic. A two-girder bridge was chosen to simplify the fabrication and testing of 

the test specimen. The notation G1 and G2 is used to denote the inside girder and outside 

girder, respectively. The spacing between the centerlines of the girders is 12 ft at full-

scale, which is the width of a typical traffic lane (AASHTO, 2005). The depth of the full-

scale girders is 4.5 ft. Each overhang is 3.75 ft. The concrete deck is 8 in thick and 19.5 ft 

wide. A 3 in thick deck haunch was assumed. The span is 90 ft and the curved bridge has 

a span length to radius of curvature (L/R) ratio of 0.45. This L/R ratio was selected to 

produce the largest torsional effects compared to the other L/R ratios of 0.1, 0.2, and 0.3 

that were studied by Dong (2008) and Putnam (2010).  

Figure 3.5 is a cross section view of the 2/3-scale TFG bridge. The test specimen 

is a 2/3-scale model of the full-scale TFG bridge. The scale was chosen to accommodate 
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the available test setup area and to reduce cost. The 2/3 scale factor also satisfies practical 

considerations. For example, a 2/3-scale model of a 90 ft bridge has the same length as a 

1/2-scale model for a 120 ft bridge. However, it is more practical to fabricate the test 

specimen from plates with the required thickness for the 2/3-scale model than from 

(thinner) plates with the required thickness for the 1/2-scale model.  

3.4. Test Specimen TFGs 

A TFG with only one tube as the top flange was chosen instead of a TFG with 

two tubular flanges, as studied by Dong (2008), for multiple reasons. The first reason is 

that local deformations may occur in the bottom tube at the bearings due to the 

compressive force from the reactions. To prevent these deformations, the tube would 

need an internal steel diaphragm or concrete infill. The second reason is that when the 

girder is composite with a concrete deck (in the final constructed condition), a larger 

girder flexural strength can be achieved using a plate rather than a tube as the bottom 

flange. The nominal yield stress of an ASTM A500 steel tube is 46 ksi, but an ASTM 

A709 plate can have a nominal yield stress of 50 ksi or larger. In addition, a steel plate 

bottom flange can have an area larger than the area of the largest available tube, which 

permits the flexural strength of a composite TFG to be larger when the bottom flange is a 

plate. The third reason is that the unit cost of steel plates is less than the unit cost of steel 

tubes. 

The top flanges of the test specimen girders are HSS12x8x3/8 tube sections 

fabricated from ASTM A500-B steel with a nominal yield stress of 46 ksi and nominal 
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ultimate tensile stress of 58 ksi (AISC, 2005). The actual yield stress of the material is 

expected to vary from the nominal value. According to the mill report, the tubes of the 

TFGs have a yield stress of 52.6 ksi and an ultimate tensile stress of 71.4 ksi (ITC, 2008). 

The tubes were cold bent into the required curvature. The cold bending process for the 

tubes led to distortions in the cross sections. Table 3.4 gives the nominal and actual 

dimensions of the 2/3-scale TFG tubes after cold bending.  

The webs and bottom flanges are fabricated from ASTM A709 grade 50 steel 

plates with a nominal yield stress of 50 ksi and a nominal ultimate tensile stress of 65 ksi 

(AASHTO, 2005). The actual yield stress and actual ultimate tensile stress of the plates 

of the TFGs are larger than the nominal values. The actual values from the mill reports 

(Nucor, 2009) are given in Table 3.5.  

Figure 3.6 shows a radial cross section view of G1 and of G2 at the bearings, at 

Section A, and at Section C. Figure 3.7 shows a radial cross section view of G1 and of 

G2 at Section B and at Section D. The nominal dimensions of the girders are given in the 

figures. The two sets of radial cross section views show the differences in the stiffener 

designs. At the bearings, at Section A, and at Section C, the stiffeners are wider than at 

Section B and at Section D, and they have bolt holes for attaching the diaphragms. 

Quarter-inch fillet welds made with E70XX electrodes using shielded metal arc welding 

(SMAW) joined the plates and tubes together to create the TFG sections. High Steel 

Structures, Inc. in Lancaster, PA, fabricated the girders in 2009. 
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The TFGs have a span length to radius ratio of 0.45 as explained in Section 3.3. 

The arc length of the span and radius along the centerline of the test specimen are 60 ft 

and 133.3 ft, respectively.  

Table 3.6 gives the arc length of the span and radius along the centerlines of G1, 

the test specimen, and G2. The distance between the girder centerlines is 8 ft. Table 3.7 

provides a summary of the nominal dimensions of the TFGs. 

The horizontal curvature of the TFGs can be described by the horizontal sweep. 

Figure 3.8 is a plan view showing eleven points along G1 and G2 where the horizontal 

sweep was taken from. The sweep is described as the lateral distance between a point of 

reference and a point on the centerline of the TFG. The point of reference is on a straight 

line between the centerline locations of the TFG at the bearings. The nominal lateral 

position (sweep) in the parallel plane between the reference points and eleven points 

along the TFG centerline is given in Table 3.8 for G1 and G2. These values apply to the 

centerlines of the tube, web, and bottom flange.  

The TFGs had a specified camber to offset the vertical deflection due to self-

weight. Figure 3.9 is an elevation view showing the eleven locations along G1 and G2 

where the camber was specified. Table 3.9 gives the specified camber for the TFGs for 

the eleven locations.  

The as-built condition of the location of the TFGs of the test specimen deviated 

slightly from the specified values on the drawings. The lateral distance in the parallel 

plane from the centerline of the ground anchor rods (Section 3.9) to the edge of the 
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bottom flange of the closest TFG was measured to the nearest half inch. The measured 

distances, the specified distances given on the drawings, and the difference between the 

two distances for the fourteen ground anchor rods are given in Table 3.10. The distances 

given on the drawing were used for calculations requiring this distance for the design of 

the loading fixtures. 

3.5. TFG Stiffeners 

To reduce web and tube distortions in the TFGs, pairs of transverse and bearing 

stiffeners are fillet welded to the tube, web, and flange at multiple locations along the 

length of the TFGs (Dong, 2008). A plan view of the locations is given in Figure 3.10. 

The stiffeners for the test specimen were designed using AASHTO LRFD Bridge Design 

Specifications (2005).  

A pair of bearing stiffeners is located at each end of the span of each TFG, which 

is 6 in away from actual end of each TFG. Figure 3.11 gives the nominal dimensions for 

these stiffeners. These were milled to bear against the bottom flange of the TFGs. Four of 

the bearing stiffeners have bolt holes for the connections to the diaphragms, as explained 

further in Section 3.7.  

Seven pairs of intermediate transverse stiffeners are located along the lengths of 

the TFGs. For G1, these stiffeners are spaced at 7.28 ft. For G2, these stiffeners are 

spaced at 7.72 ft. There are four different transverse stiffener designs. Figure 3.11 

provides the dimensions of the stiffeners for G1 and G2 at the bearings, at Section A, and 

at Section C. Figure 3.12 provides the dimensions of the stiffeners for G1 and G2 at 
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Section B and at Section D. The stiffeners at the bearings, at Section A, and at Section C 

have larger widths to accommodate the connections to the diaphragms.  

Dong (2008) found that as the number of pairs of intermediate transverse 

stiffeners increased, the load capacity of a curved TFG with distortions in the FE model 

approached the load capacity of a curved TFG without distortions in the FE model; that 

is, with a sufficient number of stiffeners, cross section distortion does not affect the load 

capacity of a TFG. The results for seven pairs of intermediate transverse stiffeners along 

the length of each TFG were similar to the results for nine pairs of intermediate 

transverse stiffeners (Dong, 2008). Therefore, the TFGs of the test specimen included 

seven pairs of intermediate transverse stiffeners and two pairs of bearing stiffeners. All 

stiffeners were fabricated from ASTM A709 steel with a nominal yield stress of 50 ksi 

and a nominal ultimate tensile stress of 65 ksi. 

3.6. Test Specimen Diaphragms 

Diaphragms connect G1 and G2 together and brace the TFGs. The diaphragms 

transmit forces between the TFGs that are necessary to maintain equilibrium of a curved 

girder system. For this reason, the diaphragms are considered primary members in the 

design of a curved girder bridge. The diaphragms influence the flange lateral bending 

stresses in curved girders (AASHTO, 2003). Although the term cross-frame is 

occasionally used synonymously with the term diaphragm, technically they are different. 

A cross-frame is a “transverse truss framework” whereas a diaphragm is a “vertically 
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oriented solid transverse member” (AASHTO, 2005). The test specimen uses diaphragms 

made from rolled wide flange beam sections. 

Five diaphragms brace the TFGs together as shown in Figure 3.10. The 

diaphragms are located at the bearings, at Section A, and at Section C, and are evenly 

spaced at 15 ft in the circumferential plane of the test specimen. According to AASHTO 

Section 6.7.4.2, “intermediate diaphragms or cross-frames should be provided at nearly 

uniform spacing in most cases, for efficiency of the structural design, for constructability, 

and/or to allow the use of simplified methods of analysis for calculation of flange lateral 

bending stress” (AASHTO, 2005).  

Dong (2008) studied the effect of the number of intermediate cross-frames on 

primary bending normal stress, warping normal stress, cross-frame forces, and girder 

displacements and rotations at mid-span of a curved TFG system. As the number of 

cross-frames increased, the stresses, forces, displacements, and rotations decreased and 

the load capacity of the curved TFG system increased. Figure 3.13 and Figure 3.14 show 

results from Dong (2008) for the maximum force in the cross-frames and the maximum 

normalized load, respectively, as the number of cross-frames in a curved three-girder 

system is varied. The plots include two types of systems: one is for a curved hollow TFG 

(CHTFG) system and one is for a curved I-girder system. Both plots are for the case 

where the concrete deck is non-composite with the girders. Dong (2008) observed that 

the differences in the results were relatively large between one cross-frame and three 

cross-frames, but the differences were not very large between three cross-frames and five 
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cross-frames. Therefore, the test specimen design incorporated three intermediate cross-

frames or diaphragms.  

To simplify the design and to reduce the cost of the reduced-scale test specimen, 

diaphragms were used instead of cross-frames. Figure 3.10 is a plan view of the test 

specimen including the diaphragm locations. Wide flange beam diaphragms were used to 

enable simpler connection details to be used. Putnam designed the diaphragms based on 

AASHTO Section 6.7.4 (2005) using scaled diaphragm forces from the full-scale TFG 

bridge as described in Section 3.3. A W24x62 section was found to be adequate. The 6.84 

ft long diaphragms were fabricated from ASTM A992 steel with a nominal yield stress of 

50 ksi and a nominal ultimate tensile stress of 65 ksi. The average actual yield stress is 56 

ksi and the average actual ultimate tensile stress is 71.5 ksi according to the mill report 

(SDI, 2008). 

3.7. Diaphragm to TFG Connections 

The diaphragms are connected to the stiffeners of the TFGs with bolted 

connection plates. Figure 3.15 shows a typical test specimen cross section view in the 

radial plane at Section A and at Section C, where the intermediate diaphragms are 

located. Figure 3.16 provides the connection details of the diaphragm, the connection 

plates, and the stiffener. Figure 3.17 (a) shows a cross section view in the circumferential 

plane of the connection plates attached to the diaphragm with a filler plate. Figure 3.17 

(b) shows a cross section view in the circumferential plane of the connection plates 

attached to the stiffener. 
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The connection plates are 20 in long, 11 in wide, 1/2 in thick, and fabricated from 

ASTM A709 steel. Two connection plates are used at each connection between a 

diaphragm and a TFG stiffener. Fourteen 3/4 in diameter ASTM A325 bolts fasten the 

diaphragm to the connection plates and another fourteen 3/4 in diameter ASTM A325 

bolts fasten the connection plates to the stiffener. A 5/16 in thick fill plate was used on 

the diaphragm side of the connection to adjust for the differences in thickness between 

the web of the diaphragm, 7/16 in, and the stiffener, 3/4 in. These plates were also 

fabricated from ASTM A709 steel. 

3.8. Bearings and Footings 

Figure 3.18 is a plan view of the west bearing and footing. The footings are 

approximately 10 in thick, 8 ft by 13 ft concrete slabs. The depth varies to accommodate 

the uneven asphalt pavement of the test area and produce a level surface for the bearings. 

The compressive strength of the concrete is 5 ksi and the nominal yield stress of the steel 

reinforcement is 60 ksi. A W14x233 reaction beam with a nominal yield stress of 36 ksi 

is tied into the middle of the footing and runs in the parallel plane. The footings and the 

reaction beams were built for previous tests of straight TFGs. The design of the footings 

is presented in Kim (2005). During the previous tests (Kim, 2005), each footing was 

subjected to 305 kip. Two 3.67 ft long W14x176 pieces have been added to the reaction 

beam to accommodate the locations of the bearings of the curved test specimen. There 

are two pairs of stiffeners along the length of the W14x233 and added pairs of stiffeners 

along the lengths of the W14x176 pieces.  
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As shown in the photo of Figure 3.19, above the reaction beams, a bearing plate 

overlaps the two wide flange sections. A 1 in square steel bar on top of this bearing plate 

acts as a “roller” support for the TFG. A square bar will not be a perfect “roller” because 

the friction between the square bar and the girder will resist lateral displacement. 

However, the square bar provides more stability than a true roller during erection. Figure 

3.20 is a photograph of the bearings and the footings during the erection of the test 

specimen.  

3.9. Ground Anchor Rods 

The ground anchor rods were drilled and grouted into underlying bedrock at the 

test setup location. The rods are 1.25 in diameter galvanized grade 150 Dywidag threaded 

bar with a modulus of elasticity of 29,700 ksi, an ultimate stress of 150 ksi, and a design 

load of 112.5 kips. The ground anchor rods are located in pairs, 18 ft apart, in the parallel 

plane. Figure 3.21 shows a plan view of the location of the ground anchor rods labeled as 

“tiedown anchor.” The ground anchor rods were located in the parallel plane rather than 

the radial plane to allow more opportunity for future use of the ground anchor rods for 

tests with girders having different geometry. Section 4.2.3 provides a more in-depth 

discussion of loading in parallel planes instead of radial planes. The heights of the ground 

anchor rods above the ground vary. Table 3.11 lists the measured height of each ground 

anchor rod, rounded to the nearest half inch. These measurements were taken in October 

of 2011 and include a small mound of grout where the ground anchor rod enters the 

ground. 
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Peirce Engineering, Inc. (PE) designed the ground anchor rods, and Earthcore 

Services, LLC (ES) installed the 14 ground anchor rods in the test setup area. Figure 3.21 

and Figure 3.22 contain the design drawings by PE for the ground anchor rods. Figure 

3.21 includes a plan view of the test setup with the numbered ground anchor rods, a 

preliminary cross section view of the loading fixture for a curved TFG test specimen, a 

detailed explanation of the installation and testing procedures, the test acceptance criteria, 

and the material details. Figure 3.22 provides additional schematic drawings for the 

ground anchor rods and installation procedure as well as a cross section view of a typical 

ground anchor rod aligned with the results of a boring log. ES took one boring located 

approximately at the center of the 14 ground anchor rods. Figure 3.23 is a copy of the 

boring log.  

To check the quality of the ground anchor rods, PE observed and assisted ES in 

the ground anchor rod proof testing procedure on July 27, 2009. The proof tests were 

completed to check that the design capacity of the ground anchor rods can be safely 

carried. ES and PE tested each ground anchor rod according to the testing procedures 

shown in Figure 3.21. The load on the ground anchor rod was gradually increased until a 

load of 133% of the design load (DL), 150 kips, was reached. PE recorded the load, 

pressure, and movement at increments 0.25xDL, 0.50xDL, 0.75xDL, 1.00xDL, 1.20DL, 

and 1.33xDL. These three parameters were also measured each minute, for 10 minutes 

total, after the 1.33xDL load was reached. All of the ground anchor rods met the required 

acceptable deflection criteria of less than or equal to 0.04 in of movement during the one 

10 minute hold period. Table 3.12 provides the total movement for each ground anchor 
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rod. At the end of each hold, ES released the tension from the ground anchor rod. The 

ground anchor rods were covered with a plastic pipe for protection until they are needed 

for tests. Figure 3.24 is a photograph of the covered ground anchor rods in the test setup 

area. 
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Table 3.1: Beam property scale factors (Putnam, 2010) 

Component Scale Factor 

Width, b (in) λ 

Depth, d (in) λ 

Thickness, t (in) λ 

Area, A (in
2
) λ

2
 

Volume, V (in
3
) λ

3
 

Torsional Rigidity, J (in
3
) λ

3
 

Moment of Inertia, I (in
4
) λ

4
 

 

Table 3.2: Analysis results scale factors for applied uniform self-weight (Putnam, 

2010) 

Component Self-Weight 
1/λ Increment of 

Self-Weight 

Self-Weight per unit 

Length, w (kip/in) 
λ

2 
λ 

Shear Force, V (kip) λ
3 

λ
2 

Moment, M (kip-in) λ
4 

λ
3 

Stress, σ (ksi) λ 1.0 

Strain, ε λ 1.0 

Shear Flow, q (kip/in) λ
2
 λ 

Displacement, u (in) λ
2
 λ 
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Table 3.3: Applied loads for full-scale TFG bridge design and 2/3-scale TFG bridge 

design (Ma, 2012) 

Design 

Load 

AASHTO (2005) and Guide 

Design Specifications for 

Bridge Temporary Works 

(AASHTO, 1995) 

Full-Scale TFG Bridge 2/3-Scale TFG Bridge 

Dead 

Load 

Dead load of the (steel) 

structural components 

Dead load of the girders 

and stiffeners with a 

unit weight of 490 lb/ft
3
 

Dead load of the scaled 

girders and stiffeners with a 

unit weight of 490 lb/ft
3
 and 

an additional load that is 

equal to 1/2 of the dead load 

of the scaled girders and 

stiffeners 

Dead load of the (concrete) 

structural components 

Uniform pressure load 

of the 8 in thick 

concrete deck with a 

unit weight of 150 lb/ft
3

 

distributed over a 19.5 

ft deck width along the 

90 ft span 

Uniform pressure load of the 

scaled (5.33 in thick) 

concrete deck with a unit 

weight of 150 lb/ft
3

 and an 

additional uniform pressure 

load equal to 1/2 of the 

uniform pressure load of the 

scaled concrete deck 

distributed over a 13 ft deck 

width along the 60 ft span 

Dead load of the 

nonstructural components 

Uniform pressure load 

of the deck forms with 

a weight of 16 lb/ft
2
 

distributed over a 19.5 

ft deck width along the 

90 ft span 

Uniform pressure load of the 

deck forms  with a weight of 

16 lb/ft
2
 distributed over a 

13 ft deck width along the 

60 ft span 

Dead load of the wearing 

surfaces 

Uniform pressure load 

with a weight of 30 

lb/ft
2
 distributed over a 

19.5 ft deck width 

along the 90 ft span 

Uniform pressure load with 

a weight of 30 lb/ft
2
 

distributed over a 13 ft deck 

width along the 60 ft span 

Dead load of the utilities 

Uniform line load with 

a weight of 275 lb/ft at 

the edges of the deck 

along the 90 ft span 

Uniform line load with a 

weight of 183.3 lb/ft at the 

edges of the deck along the 

60 ft span 
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Table 3.3 (cont’d): Applied loads for full-scale TFG bridge design and 2/3-scale 

TFG bridge design (Ma, 2012) 

Design  

Load 

AASHTO (2005) and 

Guide Design 

Specifications for Bridge 

Temporary Works 

(AASHTO, 1995) 

Full-Scale TFG Bridge  2/3-Scale TFG Bridge 

Construction 

Live Load 
Construction live load 

Uniform pressure load 

with a weight 20 lb/ft
2
 

distributed over a 19.5 

ft deck width along the 

90 ft span 

Uniform pressure load 

with a weight 20 lb/ft
2
 

distributed over a 13 ft 

deck width along the 60 

ft span 

Live Load 

HS20 truck load with 8 

kip, 32 kip, and 32 kip 

loads for the three axles, 

and a spacing of 14 ft 

between the two 32 kip 

axles to produce the 

maximum load effects 

Concentrated load with 

the same force and the 

same spacing as the 

axle loads 

Concentrated load with 

(2/3)
2
 of the force and 

2/3 of the spacing as the 

axle loads 

The lane load with a 

pressure of 640 plf 

uniformly distributed 

over a 10 ft width for a 

design lane 

Uniform pressure load 

with a weight of 64 lb/ft
2
 

distributed over a 10 ft 

width along the 90 ft 

span 

Uniform pressure load 

with a weight 64 lb/ft
2 

distributed over a 

(2/3)*10 ft = 6.67 ft 

width along the 60 ft 

span 
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Table 3.4: Tube distortion from cold curving process (Sause et al., 2009) 

Location 

Nominal 

Dimensions 

(in) 

Actual Dimensions After Curving 

G1 G2 

Inside 

Depth 

(in) 

Outside 

Depth 

(in) 

Tube 

Width 

(in) 

Inside 

Depth 

(in) 

Outside 

Depth 

(in) 

Tube 

Width 

(in) 

East End 

12 x 8 

8.450 8.116 11.708 8.328 8.160 11.746 

Section A 8.506 8.157 11.642 8.499 8.123 11.678 

West End 8.325 8.157 11.689 8.501 8.124 11.633 

 

Table 3.5: Actual material properties of TFGs (Nucor, 2009) 

TFG Component 
Yield Stress 

(ksi) 

Ultimate Tensile 

Stress (ksi) 

Tube (G1 & G2) 52.6 71.4 

Web  

(G1 & G2) 

Test 1 59.5 82.0 

Test 2 51.9 77.0 

Avg. 55.7 79.5 

G1 bottom 

flange 

Test 1 53.2 79.6 

Test 2 64.3 81.5 

Avg. 58.8 80.6 

G2 bottom flange Not Available 

 

Table 3.6: Test specimen radii and arc lengths 

Location 
Radius Arc Length 

in ft in ft 

G1 1552.0 129.3 698.4 58.2 

CL Test 

Specimen 
1600.0 133.3 720.0 60.0 

G2 1648.0 137.3 741.6 61.8 
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Table 3.7: TFG cross section and geometry summary (Sause et al., 2009) 

Girder 
Depth 

(in) 
Tube 

(in) 
Plate 

(in) 
Web 

(in) 
Area 

(in
2

) 
L 

(ft) L/R 

G1 36 12x8x0.349 12x0.75 27.25x0.375 32.7 60 0.45 

G2 36 12x8x0.349 12x1.5 26.5x0.375 41.4 60 0.45 

 

Table 3.8: Nominal horizontal sweep values (Putnam, 2011) 

Location 
Sweep (in) 

G1 G2 

0 0.000 0.000 

0.1 14.693 15.571 

0.2 26.023 25.579 

0.3 34.066 36.102 

0.4 38.871 41.195 

0.5 40.469 42.889 

0.6 38.871 41.195 

0.7 34.066 36.102 

0.8 26.023 25.579 

0.9 14.693 15.571 

1 0.000 0.000 
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Table 3.9: Specified camber values (Putnam, 2011) 

Location 
Camber (in) 

 G1  G2 

CL BRG. 0.00 0.00 

0.1 0.06 0.14 

0.2 0.11 0.27 

0.3 0.15 0.37 

0.4 0.17 0.43 

0.5 0.18 0.45 

0.6 0.17 0.43 

0.7 0.15 0.37 

0.8 0.11 0.27 

0.9 0.06 0.14 

CL BRG. 0.00 0.00 
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Table 3.10: Lateral distance in parallel plane from edge of TFGs to centerline of 

ground anchor rods  

Anchor 

Rod 
Section 

Measured 

Distance (in) 

Drawing 

Distance (in) 

Difference 

(in) 

1 DW  53.0 53.8 -0.8 

2 CW  41.5 41.5 0.0 

3 BW  34.0 34.1 -0.1 

4 A 31.0 31.7 -0.7 

5 BE  32.5 34.1 -1.6 

6 CE  41.5 41.5 0.0 

7 DE  53.5 53.8 -0.3 

8 DW  52.0 52.6 -0.6 

9 CW  65.5 65.8 -0.3 

10 BW  72.5 73.7 -1.2 

11 A 75.0 76.3 -1.3 

12 BE  72.5 73.7 -1.2 

13 CE  65.5 65.8 -0.3 

14 DE  52.0 52.6 -0.6 
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Table 3.11: Measured ground anchor rod heights 

Ground 

Anchor Rod 
Height (in) 

1 51.0 

2 49.5 

3 48.0 

4 51.5 

5 50.5 

6 51.0 

7 49.0 

8 51.5 

9 53.5 

10 54.5 

11 48.5 

12 52.5 

13 53.5 

14 56.0 
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Table 3.12: Ground anchor rod proof test summary (PE, 2009b) 

Ground 

Anchor 

Rod 

Total 

Movement (in) 

Allowable 

Movement (in) 

Actual / 

Allowable  

1 0.016 0.04 0.400 

2 0.023 0.04 0.575 

3 0.010 0.04 0.250 

4 0.007 0.04 0.175 

5 0.015 0.04 0.375 

6 0.021 0.04 0.525 

7 0.007 0.04 0.175 

8 0.020 0.04 0.500 

9 0.010 0.04 0.250 

10 0.028 0.04 0.700 

11 0.005 0.04 0.125 

12 0.012 0.04 0.300 

13 0.022 0.04 0.550 

14 0.015 0.04 0.375 
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Figure 3.1: Test location (Google, 2012)  

  

Test Setup 

Location 

Lehigh University 

ATLSS Engineering 

Research Center 

117 ATLSS Dr 

Bethlehem, PA 18015 
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Figure 3.3: Plan view at Section DE 
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Figure 3.4: Cross section view of full-scale TFG bridge (Sause et al., 2009) 

 

 

Figure 3.5: Cross section view of 2/3-scale TFG bridge (Sause et al., 2009) 
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(a) G1 

 

(b) G2 

Figure 3.6: Radial cross section view of TFG at the bearings, at Section A, and at 

Section C (Putnam, 2011) 
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(a) G1  

 

(b) G2 

Figure 3.7: Radial cross section view of TFG at Section B and at Section D (Putnam, 

2011)  
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(a) G1 

 

 

 

(b) G2 

Figure 3.11: Bearing stiffeners and transverse stiffeners at Section A and at Section 

C (Putnam, 2011)   
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(a) G1  (b) G2 

Figure 3.12: Transverse stiffeners at Section B and at Section D (Putnam, 2011)   
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Figure 3.13: Variation of maximum force in cross-frames with number of cross-

frames for systems without a composite deck (Dong, 2008) 

 

 

Figure 3.14: Variation of load capacity with number of cross-frames for systems 

without a composite deck (Dong, 2008)  
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Figure 3.15: Test specimen radial cross section view at diaphragm location (Putnam, 

2011)  



www.manaraa.com

60 

 

 

 

 

(a) Bolt holes in diaphragm  (b) Bolt holes in G2 stiffener 

 

(c) Bolt holes in connection plate 

Figure 3.16: Diaphragm to TFG connection detail in radial plane (Putnam, 2011)  
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(a) Connection to diaphragm 

 

(b) Connection to stiffener 

Figure 3.17: Diaphragm to TFG connection detail in circumferential plane (Putnam, 

2011)  
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Figure 3.18: Plan view of west bearing and footing (Putnam, 2011)  
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Figure 3.19: East bearing of test setup (Sause et al., 2009) 

 

 

Figure 3.20: Erection of test specimen (Sause et al., 2009) 
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Figure 3.21: PE ground anchor rod drawing, sheet 1 of 2 (PE, 2009a)  
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Figure 3.21 (cont’d.): PE ground anchor rod drawing, sheet 1 of 2 (PE, 2009a)  
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Figure 3.22: PE ground anchor rod drawing, sheet 2 of 2 (PE, 2009a) 
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Figure 3.22 (cont’d.): PE ground anchor rod drawing, sheet 2 of 2 (PE, 2009a)  
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Figure 3.23: Test setup area boring log (ES, 2009)  
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 Figure 3.24: Installed ground anchor rods covered by plastic pipes (Sause et al., 

2009)  

East Footing 

Covered 

Ground Anchor 

Rod (Typ.) 



www.manaraa.com

70 

 

CHAPTER 4: LOADING AND KINEMATICS OF TEST SPECIMEN AND LOADING 

FIXTURES 

4.1. Introduction 

This chapter describes the loading and the kinematics of the test specimen and the 

loading fixtures. Section 4.2 explains the test specimen loading and then Section 4.3 

discusses the kinematic response of the test specimen and loading fixtures under load. 

4.2. Test Specimen Loading 

This section explains the basis for the loads applied to the test specimen. The 

loads are based on the loads and limit states considered by the AASHTO Load and 

Resistance Factor Design (LRFD) Bridge Design Specifications (AASHTO, 2005). 

Section 4.2.1 describes the aspects of the AASHTO LRFD Specifications (2005) related 

to the tests. Section 4.2.2 describes the loads that will be applied to the test specimen and 

Section 4.2.3 presents results from an FE model that was used to plan the tests. 

4.2.1. LRFD Loading and Limit States for Bridge Design 

The AASHTO LRFD Specifications (2005) require an examination of all 

structural components and connections of a bridge considering all critical stages of its 

life, including handling, transportation, and construction (Dong, 2008). The factored load 

effect (demand) on a structural component or connection must be less than the factored 

resistance of the component or connection. The material, geometry, and resistance factors 

affect the calculated factored resistance values (Putnam, 2010). The resistance factors, ϕ, 



www.manaraa.com

71 

 

specified in AASHTO Section 6.5.4.2 depend on resistance type (e.g., flexure, shear, and 

axial compression). All resistance factors are less than or equal to 1.0. The load factors, γ, 

given in AASHTO Section 3.4.1 depend on the type of load (e.g., dead load and live 

load) and the limit state being examined. AASHTO Table 3.4.1-1 provides various load 

combinations to be considered. The load factors can be less than, equal to, or greater than 

1.0. If the factored resistances are less than or equal to the factored load effects, the 

bridge design is deemed to be adequate (AASHTO, 2005). 

Dong (2008) considered three limit states in developing design guidelines for 

curved hollow TFGs: Constructability, Service II, and Strength I. Constructability limit 

states are considered to ensure that yielding or buckling will not occur during 

construction. This consideration includes controlling stresses and deflections that occur 

during erection. Service II limit states are considered to ensure that under normal service 

conditions, yielding and permanent deflections do not occur in bridge girders. Strength I 

limit states are considered to establish safety under the maximum loading of the bridge 

under normal use; global and local strength and stability are ensured (Dong, 2008). 

Constructability limits are checked for two conditions: (1) a single girder during erection 

and (2) multiple non-composite girders connected by cross-frames (or diaphragms) 

during deck placement. Service II and Strength I limits are checked for the final 

constructed condition of the bridge. In this condition, the bridge girders are composite 

with the bridge deck.  

For the three limit states studied by Dong (2008), different combinations of loads 

are considered. For an individual, non-composite steel girder during erection, the only 
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design load considered for Constructability is the self-weight of the steel girder, SW, 

which is based on a unit weight of 490 lb/ft
3
 for the steel. For a system of non-composite 

girders connected by cross-frames during construction, the design loads considered for 

Constructability include the applied dead load, DC, and the applied live load, LLC, during 

deck placement. DC includes the weight of the structural components and attachments 

(including SW) and the weight of the concrete deck, which is based on a unit weight of 

150 lb/ft
3
 for reinforced, normal weight concrete. DC also includes a weight of 16 lb/ft

3
 

for the stay-in-place deck forms and an estimated weight of 10% of the steel girder 

weight to account for stiffeners and cross-frames. The construction live load (LLC) is 

assumed to be a uniform pressure of 20 lb/ft
2
 over the bridge deck area; this value was 

taken from the Guide Design Specifications for Bridge Temporary Works (AASHTO, 

1995). Table 4.1 lists the load combinations for the Constructability limit states. 

For Service II and Strength I limit states, the same types of loads are used, but the 

load factors are different. Table 4.2 gives the load factors. The loads include dead loads, 

DC and DW, and live loads, LL. DC is explained previously. DW is the superimposed dead 

load, including the weight of the utilities attached to the bridge and the weight of the 

future wearing surfaces applied in the final constructed condition of the bridge. The 

superimposed dead load also includes components, such as lights and parapets, and is 

estimated to be 275 lb/ft applied along the centerline of the curb. The future wearing 

surface has a weight of 30 lb/ft
2
. The live load is based on the design lane load and the 

HS20 design truck given in AASHTO (2005). These two loads are arranged to produce 

the maximum load effects on each girder. 
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The AASHTO LRFD Specifications (2005) provide different design criteria for 

each limit state. Dong (2008) explains how the criteria apply to curved TFGs. 

Constructability limit states during deck placement are the main focus of the tests on the 

test specimen. The design criteria for Constructability during deck placement are 

included here. The following two equations must be satisfied:   

                (4.1) 

     
 

 
         (4.2) 

The variables as defined in AASHTO Section 6.3 (2005) are, 

fbu is the largest value of the compressive stress throughout the unbraced 

length in the flange under consideration, calculated without consideration 

of flange lateral bending (ksi) 

fl is the flange lateral bending stress (ksi) 

ϕf is the resistance factor for flexure 

Rh is the hybrid factor to account for different material strengths for the 

web and flanges 

Fyc is the specified minimum yield stress of the compression flange (ksi) 

Fnc is the nominal flexural resistance of the compression flange (ksi) 
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Equation (4.1) requires that the maximum combined stress in the compression flange 

does not exceed the minimum yield stress of the flange. Equation (4.2) requires that the 

flange has sufficient strength with regard to flange local buckling and member lateral-

torsional buckling. For TFGs, Fnc is based on the lateral-torsional buckling resistance of 

the compression flange. Local buckling is not considered for the tubular flange as long as 

the tubular flange is compact and satisfies the following limit: 

 
 

 
    √

 

  
 (4.3) 

where, 

b is the horizontal width of the tube (in) 

t is the thickness of the tube (in) 

E is Young’s modulus (ksi) 

Fy is the specified minimum yield stress of the tube (ksi) 

The lateral-torsional buckling resistance, Fnc, equals the design flexural strength, Md, 

divided by the elastic section modulus of the compression flange taken about the major 

axis of the cross section, Sxc. The calculation of Md is explained further by Dong (2008) 

and is based on prior work by Kim and Sause (2005a, b). 
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4.2.2. Load Condition of Test Specimen 

Two load conditions will be applied to the test specimen. The first load condition 

is the Constructability limit state design load, based on the deck placement condition. The 

total load on the test specimen for this condition is 181 kip. This total load is the 2/3-

scaled value (i.e., 4/9 of the total full-scale load) for the deck placement condition design 

load used to design the full-scale TFG bridge. The TFG test specimen design and scaling 

process is explained in Section 3.3. This load condition may be applied multiple times. 

The second load condition for the test specimen will take it to its maximum load capacity. 

The expected failure mode is yielding in the top tube flanges where the stress is expected 

to be dominated by bending normal stress (Dong, 2008). Under both load conditions, the 

responses of the test specimen, including reactions at the bearings, deflections, and 

strains, will be measured.  

The test specimen will be loaded using seven loading fixtures. Each loading 

fixture will apply two concentrated loads to the test specimen. The loading fixtures will 

be located at the seven parallel sections explained in Section 3.2. Figure 4.1 is a parallel 

plane cross section view of the test specimen and a loading fixture. At each loading 

fixture, two “loading rod assemblies” will pull down on a wide flange beam (the “loading 

beam”) above the test specimen. Each loading rod assembly is comprised of a hydraulic 

jack and a series of steel plates, half-rounds (steel round bars cut in half lengthwise), and 

steel rods. The loading beam will bear down on the test specimen through two “load 

bearing assemblies.” Each load bearing assembly is a series of steel components 

including plates, half-rounds, and a hollow-structural-section (HSS). The loading rod 
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assemblies will also pull up on a pair of laced channels (the “load transfer channels”) 

below the test specimen. The load transfer channels will be anchored by the “ground 

anchor rods” that will resist the upward force of the loading rod assemblies. The design 

of the loading fixtures and its components is presented in Chapter 5.  

4.2.3. Idealization and Modeling of Loads 

Deck placement loads are dominated by uniformly distributed loads. The primary 

exception is the load from deck finishing machines. For the tests, the deck placement 

loads are initially idealized as a uniformly distributed load, which is constant over the 

deck area. This distributed load will be simulated in the tests with 14 discrete 

concentrated loads applied by the seven loading fixtures. An FE study was completed 

using FE models developed by Ma (2012) to show that the concentrated loads would 

produce test specimen responses similar to those from a distributed load. The study, 

explained in this section, considered multiple load cases, each with a different simulation 

of the idealized uniformly distributed load. As discussed later, the responses were found 

to be similar enough to use concentrated loads in the tests.  

During deck placement, the non-composite girders support the weight of the 

concrete deck, the construction live load, and the formwork required to cast the deck, as 

described previously. The formwork supports the deck and the construction live load, and 

transfers this load as a pressure to the top of the girder flanges. In the tests, it is not 

possible to apply a uniformly distributed load representing the concrete deck, formwork, 

and construction live loads. The tests require the load to be applied and removed multiple 
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times. In addition, constructing an actual deck would be expensive. In the final test, the 

test specimen will be loaded beyond its maximum load capacity, and safety would be a 

concern.  

The test specimen will be loaded with concentrated loads instead of a uniformly 

distributed load. For a simply supported straight girder, the same mid-span moment can 

be developed by a uniformly distributed load or a set of concentrated loads. For a simply 

supported curved girder, this may not be true because of the torsional load effects caused 

by the horizontal curvature of the girder. Therefore, FE models of the test specimen were 

developed in ABAQUS (2011) to determine if concentrated loads on the test specimen 

could produce similar load effects as a uniformly distributed load on the test specimen.  

To help determine the number and locations of the concentrated loads on the test 

specimen, a preliminary analysis was conducted of a simply supported straight girder 

under a uniformly distributed load, and then under concentrated loads. Figure 4.2 (a), (b), 

and (c) shows the free body diagram and corresponding moment diagram for a uniformly 

distributed load, a concentrated load simulation with an even number of segments (N is 

even), and a concentrated load simulation with an odd number of segments (N is odd), 

respectively. The concentrated loads used to simulate the uniformly distributed load are 

evenly spaced between the supports, creating N segments with the same length. Each 

concentrated load simulates a portion of the uniformly distributed load. The mid-span 

moment for the concentrated load simulation can be calculated based on N.  
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For a uniformly distributed load, ω, acting along a beam of length, L, the 

maximum moment is: 

            
   

 
 (4.4) 

For the concentrated load simulation, each intermediate concentrated load is equal to:  

   
  

 
 (4.5) 

The concentrated load applied at each support is equal to P/2.  

When N is an even number, the maximum moment can be calculated from the 

following equation:  
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   (4.6) 

When simplified, Mmax_even equals Mmax_distr.  

When N is an odd number, the maximum moment can be calculated from the 

following equation:  
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   (4.7) 
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Simplifying this equation results in a maximum moment of:  

          
   

 
(
    

  
) (4.8) 

Mmax_odd is always less than Mmax_distr. Therefore, the load effects at mid-span due to a 

uniformly distributed load are well-simulated by equally-spaced concentrated loads that 

divide the span into an even number of segments, where the number of intermediate 

concentrated loads is odd.   

The tests will use seven concentrated loads along each curved TFG between the 

bearings to simulate the idealized uniformly distributed load. Figure 4.3 shows a radial 

plane cross section view of the 2/3-scale test specimen with idealized loads. For the 

curved girder test specimen, it was not assumed that the load effects at mid-span 

produced by concentrated loads would be the same as the load effects at mid-span 

produced by a uniformly distributed load. FE analyses were used to compare the 

idealized load condition with the test load condition to ensure that the concentrated loads 

on the curved TFGs would produce similar responses at mid-span as the idealized 

uniformly distributed load.  

Several load cases were studied using ABAQUS FE software (ABAQUS, 2011). 

An FE model of the test specimen was developed using shell elements for the TFGs and 

the stiffeners, and beam elements for the diaphragms and connection plates (Ma, 2012). 

The FE model used the boundary condition combination bc2 with two pins and two 

rollers, explained in Section 4.3.2. For each load case, the FE model was loaded until the 
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TFG system reached its maximum load capacity. The load was applied to the TFGs in 

increments. The load for each increment was proportional to a reference load. The 

reference load used for the FE analysis was equal to the weight of the concrete deck. The 

responses of the FE model, such as the displacements, were provided at each increment, 

or “load step”, during loading (Ma, 2012).  

The maximum load capacity of the FE model for each load case was used to 

verify the similarity in the responses of the test specimen to the different load cases. Six 

load cases are presented next. The six load cases evolve from the idealized load condition 

to the test load condition. Case 1 is the most accurate simulation of the idealized 

uniformly distributed load for the deck placement condition and Case 6 is the most 

accurate simulation of the concentrated loads for the test load condition.  

Case 1, shown in Figure 4.4 (a) and Figure 4.5 (a), models the idealized uniformly 

distributed load as distributed line loads and distributed pressure loads on the TFGs over 

the span. The distributed line loads simulate the loads that would be carried to the TFGs 

by formwork. The line loads correspond to the idealized uniformly distributed load from 

bridge deck segments a and c in Figure 4.3. The distributed pressure loads simulate the 

loads applied directly to the TFGs, which corresponds to the uniformly distributed load 

from bridge deck segments b in Figure 4.3.  

In the FE model, the loads are applied to the tops of the TFG tubes. The line loads 

are applied at the centerline of the sides of the tubes and the pressure loads are applied 

between the line loads. Figure 4.4 (a) shows a cross section view and Figure 4.5 (a) 
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shows an elevation view of the test specimen with these loads. In Figure 4.5 (a), for load 

Case 1, ω represents ω1_1 or ω1_2. The line load, ω1_1, is applied to the south side of the 

tube of G1 and the north side of the tube of G2. This load simulates the weight of the 

concrete deck over a 2 ft width from the edge of the bridge deck to the centerline of the 

side of the closest tube (segment a in Figure 4.3). The line load, ω1_2, is applied to the 

north side of the tube of G1 and the south side of the tube of G2. This load simulates the 

weight of the concrete deck over an 8 ft width from the centerline of the side of the tube 

where the line load is applied to the centerline of the bridge (segment c in Figure 4.3). 

The uniform pressure, f1, is applied to the top of the tubes. This load simulates the weight 

of the concrete deck directly above the tubes (segment b in Figure 4.3). 

Case 2 models the idealized distributed load using distributed line loads applied to 

the centerlines of the sides of the tubes. Figure 4.4 (b) shows a cross section view and 

Figure 4.5 (a) shows an elevation view of the test specimen with these applied loads. In 

Figure 4.5 (a), f1 is not applied for load Case 2, and ω represents ω2_1 or ω2_2.The line 

loads, ω2_1 and ω2_2, combine the loads from Case 1 as follows:  

           
  
 
  (4.9) 

           
  
 
  (4.10) 

These loads are applied over the span of the TFGs. 
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Case 3 and Case 4 model the idealized uniformly distributed load as 14 

concentrated patch loads, with one load applied over a 12 in by 12 in bearing plate at 

each of the seven locations along the length of each TFG. Figure 4.4 (c) shows a cross 

section view at Section B and Section D and Figure 4.5 (b) shows an elevation view of 

the test specimen with these applied loads. In Figure 4.5 (b), p represents p3_1, p4_1, p3_2, 

or p4_2. Cross section views at Section A and at Section C differ from the view shown in 

Figure 4.4 (c) in that these cross section views would include a diaphragm. The 

difference between Case 3 and Case 4 is the location of the patch loads. The patches of 

Case 3 are located in radial planes, but the patches of Case 4 are located in parallel 

planes. Section 3.2 describes these planes.  

Ideally, the loading fixture would load the test specimen in the radial planes 

because each patch load for one TFG would represent an idealized tributary area of the 

bridge deck. However, the ground anchor rods are located in parallel planes as discussed 

in Section 3.9. The loading fixtures (Figure 4.1), introduced in Section 4.2.2 and 

described more completely in Chapter 5, use the ground anchor rods to react the load that 

is applied to the test specimen. Sketches of a loading beam and load transfer channels are 

shown in Figure 4.6 and Figure 4.7. Figure 4.6 shows a perspective view, cross section 

view, and plan view for radial loading of the test specimen. Figure 4.7 provides the same 

views for parallel loading of the test specimen. When the loading beam is in the radial 

plane and the load transfer channels are in the parallel plane with the ground anchor rods, 

there are significant eccentricities in the loading fixture. Therefore, parallel plane loading 

(Figure 4.7) was selected for the loading fixtures.  
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In the parallel plane loading condition, the loads are applied at seven parallel 

sections between the ends of the test specimen. An odd number of sections was chosen so 

that one load is applied at mid-span to maximize the primary bending moment at mid-

span. In addition, as shown earlier, a uniformly distributed load and an odd number of 

evenly-spaced concentrated loads produces the same mid-span moment (per unit total 

applied load) in a straight beam. For seven concentrated loads (and three internal 

diaphragms), the loads are applied at the sections with a diaphragm and at the sections 

halfway between the diaphragms. In the test setup, sufficient space is needed to work 

around the loading fixtures and using seven uniformly spaced loading fixtures allows for 

7.5 ft spacing between adjacent loading fixtures.  

For Case 3, the radial loading case, the patch loads along G2 are the same and the 

patch loads along G1 are the same. However, the G2 patch loads are larger than the G1 

patch loads because the G2 patch loads simulate the load on a larger bridge deck area as 

shown in Figure 4.8 (a). The difference is caused by the curvature of the test specimen 

and the resulting bridge deck area that each TFG supports. Assuming that each TFG 

supports half of the width of the deck, G2 supports a total area of 399.5 ft
2
 and G1 

supports a total area of 380.5 ft
2
. The outside patch loads are each equal to 1/8

th
 of the 

total load supported by G2 and the inside patch loads are each equal to 1/8
th

 of the total 

load supported by G1.  

The parallel loading patch load tributary areas are different from the radial 

loading patch load tributary areas because the areas are divided by parallel planes and not 

radial planes. Figure 4.8 compares the bridge deck divided into tributary areas for the 
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radial loading case and the parallel loading case. The differences between the 

corresponding areas for the two cases are small. Therefore, the patch load values based 

on the radial loading tributary areas were used for both Case 3 and Case 4. 

Case 5 is the same as Case 4 except that at mid-span, concentrated point loads 

replace the patch loads. Figure 4.4 (d) shows a cross section view of the test specimen 

with the applied loads at Section A. The diaphragm is modeled as a beam element (as in 

the FE model). Figure 4.5 (c) shows an elevation view of the test specimen with the 

applied loads where p represents p5_1 or p5_2, and P represents P5_1 or P5_2. Each point 

load equals the patch pressure load multiplied by the patch area it replaces. The point 

loads, P5-1 and P5_2, are applied to the inside top edge of the stiffeners. The load is applied 

to the stiffener because loading directly on the tube at mid-span, where failure due to 

flexural yielding of the tube is expected, might affect the test specimen capacity. 

Therefore, the loads at mid-span will be applied to the mid-span diaphragm or stiffeners 

instead of the tubes. The exact location was unknown before the loading fixtures were 

designed, so the location was approximated. The loading fixtures were designed using 

Case 5 results. 

Case 6 is the same as Case 5 except the mid-span point loads are located where 

the loading fixture will apply the loads to the mid-span diaphragm. Figure 4.4 (e) shows a 

cross section view at Section A with the actual location of the point loads. The elevation 

view is similar to Case 5 (Figure 4.5 (c) where p represents p6_1 or p6_2, and P represents 

P6_1 or P6_2). Case 6 closely simulates the loading of the test specimen by the loading 

fixtures.  



www.manaraa.com

85 

 

Figure 4.9 and Figure 4.10 are force-vertical displacement plots provided by Ma 

(2012) from the FE analyses of the test specimen under the six different load cases 

simulating the idealized uniformly distributed load. Figure 4.9 shows results for G1 and 

Figure 4.10 shows results for G2. The vertical axis is the normalized total load calculated 

by dividing the total load by the reference load. The horizontal axis is the vertical 

deflection of the node at the center of the web at Section A (mid-span). The plots show 

that the force-displacement responses are similar between load cases. Each load case has 

approximately the same maximum load and corresponding displacements up to the load 

step of the maximum load. There is more variation between the different load cases after 

the maximum load during unloading. Using concentrated loads for the tests should 

closely simulate the load effects at mid-span that would be caused by the idealized 

uniformly distributed load on the test specimen. 

4.3. Kinematic Conditions of Test Specimen and Loading Fixtures 

A study of the kinematics of the test specimen and loading fixtures was conducted 

to design the loading fixtures. The design of the loading fixtures attempts to minimize the 

restraint of the test specimen and maintain stability of the loads as the test specimen 

deforms under loads. Section 4.3.1 explains the displacements obtained from the FE 

analysis of the test specimen. Section 4.3.2 discusses how boundary conditions in the FE 

model affected the kinematic results. Lastly, Section 4.3.3 describes how the 

displacements of the FE analysis were used to visualize the kinematics of the test 

specimen and loading fixtures, and to estimate the displacements needed to design the 

loading fixtures. 
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4.3.1. Displacements from FE Analysis  

The loading fixtures are designed to minimize the restraint of the test specimen as 

it deforms under loads. Differences in the initial position and a displaced position of the 

test specimen were used to define the required movements of the loading fixtures. 

Displacement values for the test specimen under load Case 5 were obtained from the FE 

analysis. Some values were used directly, and other values were used in calculations 

and/or sketches to approximate the required displacements of the loading fixtures. FE 

responses were obtained at the nodes of the FE model. Results needed at a location 

without a node were estimated.  

Displacements were obtained in the FE model coordinate system, which coincides 

with the cylindrical coordinate system based on the geometry of the test specimen. 

Displacements in the Cartesian coordinate system were estimated from these results. 

Section 3.2 explains the two coordinate systems. Positive displacements in the cylindrical 

coordinate system are up for the vertical direction, away from the center of curvature of 

the test specimen in the radial direction, and counterclockwise in the circumferential 

direction. Positive displacements in the Cartesian coordinate system are up for the 

vertical direction, towards the north in the “parallel plane,” and towards the west in the 

“longitudinal plane.”  

FE displacement results were taken at nodes on the top of the tubes and the mid-

height of the web for both G1 and G2. Figure 4.11 shows the node locations on a TFG. 

Displacements of the TFGs near the position of the loading fixtures were of interest. The 
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nodes on the north and south edges of a patch load are arranged in a radial plane, but 

were often treated as being in a parallel plane. The nodes on the east and west edges of a 

patch load are arranged in a circumferential plane, but were often treated as being in a 

longitudinal plane. 

Displacements for the test specimen were obtained at the seven parallel cross 

sections where the loading fixtures are located. In theory, displacements from only four 

cross sections should have been needed because of the symmetry of the test setup. 

However, the displacements of the test specimen were not symmetric in the FE model 

because of the boundary conditions used in the FE model (Section 4.3.2). The loading 

fixture designs at Section B, at Section C, and at Section D used the largest displacements 

from the FE analysis for either the corresponding east section or the corresponding west 

section.  

The loading fixtures were designed for displacements from a load step in the FE 

results after the maximum load capacity was reached. Even though the load was less than 

the maximum load, the displacements were larger due to yielding and failure of the 

TFGs. For example, Figure 4.12 and Figure 4.13 are force-vertical displacement plots for 

G1 and G2, respectively, under load Case 5 (Ma, 2012). Figure 4.14 and Figure 4.15 are 

corresponding force-radial displacement plots for G1 and G2, respectively (Ma, 2012). 

The displacements are given for the top, center node (node C in Figure 4.11 (b)) at 

Section A, at Section BE, at Section CE and at Section DE. These plots show how the FE 

model continues to displace after the maximum load capacity is reached. The loading 

fixtures are designed so the movements of the loading fixtures do not limit the 
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displacement of the test specimen as it displaces beyond the displacements at the 

predicted maximum load.  

4.3.2. Effect of Boundary Conditions on Kinematics 

One parameter that affected the FE kinematic results was the boundary 

conditions, which are intended to simulate the test specimen support conditions for the 

tests. FE models were used to study how different combinations of pins and rollers 

changed the FE kinematic results (Ma, 2012). The results were then compared and a set 

of boundary conditions was chosen for the FE analysis used to provide the displacements 

needed to design the loading fixtures. 

In the test setup, the test specimen bears on square, steel bars. The TFGs are not 

attached to the bars. The bars restrain vertical displacement in the downward direction at 

each bearing. The test specimen is free to rotate about a radial axis at the edges of the 

bars. The radial displacements and circumferential displacements are partially restrained 

by friction. The supports should not move radially or circumferentially as long as the 

radial and circumferential reactions are less than the maximum static frictional force that 

can be developed, which is equal to: 

            (4.11) 

In this equation, μs is the static coefficient of friction for steel on steel, approximately 0.3 

(AASHTO, 2005), and N is the force normal to the contact surface, which would be equal 

to the vertical reaction. The static friction developed is only as large as it needs to be to 
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prevent motion, but cannot be larger than fs max. Slip should occur if the radial and 

circumferential reactions become larger than fs max. 

The FE models used to study the effects of the different boundary condition 

combinations used two types of supports. The first type of support was a roller support 

that allowed circumferential displacements and rotations about all axes, and prevented 

radial displacements and vertical displacements. The second type of support was a pin 

support that allowed rotations about all axes, and prevented circumferential 

displacements, radial displacements, and vertical displacements.  

Figure 4.16 shows a schematic of the two boundary condition combinations 

studied. For both FE models, the west end of G1 and G2 was supported by a roller and 

the east end of G1 was supported by a pin. For the first FE model, with boundary 

condition combination bc1, a roller supported the east end of G2. For the second FE 

model, with boundary condition combination bc2, a pin supported the east end of G2.  

To obtain a better comparison of displacements from the two FE models, the 

displacements were taken at a load step when the total load was equal to 325 kip in both 

FE models. For bc1, this load occurs at load step 33 in the FE results, and for bc2, this 

load occurs at load step 32 in the FE results. This load was near the maximum applied 

load on the FE model for both boundary conditions.  

Table 4.3 and Table 4.4 present some of the displacements that were compared. 

These tables contain displacements for G1 and G2 at all seven parallel cross sections. 

Table 4.3 provides vertical, radial, and circumferential displacements obtained directly 
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from the center node of each patch load. Table 4.4 gives rotations about the radial axis (in 

the circumferential plane) obtained directly from the center node of each patch load. 

Table 4.4 also gives estimated rotations about the circumferential axis (in the radial 

plane) of the TFG at each patch load. The estimation of the rotations in the radial plane is 

explained in Section 4.3.3.  

Most of the displacements were similar between the two FE models, but those for 

the FE model with the boundary condition combination bc2 were usually slightly smaller, 

because the additional pin support of G2 restrained the test specimen more. The main 

exception is the circumferential displacements of the east side of the test specimen, which 

are smaller for boundary condition combination bc1. The roller at the east end of G2 for 

bc1 can displace circumferentially away from the mid-span. Therefore, the 

circumferential displacements of the TFGs near this support were reduced.  

It was decided to use the kinematic results from the FE model with boundary 

condition combination bc2 for the design of the loading fixtures. Boundary condition 

combination bc2 was chosen because the kinematic results are similar for bc1 and bc2, 

and bc2 better simulates the boundary conditions of the test specimen since G1 and G2 

have similar bearings as described in Section 3.8.  

4.3.3. Kinematics Used to Design Loading Fixtures 

The displacements of the test specimen from the FE model were used to estimate 

the displacements of the loading fixtures during the tests. Estimated displacements from 
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the FE model with boundary condition combination bc2 under load Case 5 were used to 

design the loading fixtures.  

Sketches and calculations were used to visualize and quantify the displacements 

of the test specimen and loading fixtures under loading. For example, Figure 4.17 is an 

AutoCAD drawing of a radial plane cross section view of the TFGs. The sketch was 

produced using vertical and radial displacements, and rotations in the radial plane, from 

the top center nodes of the TFGs, assuming the TFG cross sections displace as rigid 

bodies. This sketch can be used to visualize how the test specimen displaces under 

loading. 

The displaced positions of the test specimen were used to estimate the displaced 

positions of the loading fixtures, which were also visualized with sketches. Figure 4.18 

presents a parallel plane cross section view of a preliminary design of the loading fixture 

in its initial position and an estimated displaced position after the test specimen reaches 

the maximum load. The sketch shows that the loading fixture may collide with the north 

ground anchor rod, so the positions of the loading rod assemblies were changed. Figure 

4.19 shows a parallel plane cross section view at Section A of the final design of the 

loading fixture in its initial position and an estimated displaced position after the test 

specimen reaches the maximum load. The sketch shows that the final loading fixture 

design should not collide with the north ground anchor rod. In this figure, the diaphragm 

in the displaced position is not shown for clarity. 
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The kinematics of the test specimen and loading fixtures were estimated from the 

displacements of the top of the TFG tubes from the FE analysis. The rotation of the top of 

each tube in the parallel plane, which is the rotation about the longitudinal axis, was 

approximated by the calculated rotation in the radial plane. The rotation in the radial 

plane was not taken directly from the rotation of the center node (C) because of the 

potential for local deformation of the top tube wall. Figure 4.20 (a) shows a radial plane 

cross section schematic view of a TFG in the initial position and a displaced position with 

the corresponding north and south nodes of the patch on the top of the tube (shown in 

Figure 4.11). Figure 4.20 (b) shows the nodes with the variables used to calculate the 

rotation in the radial plane of the tube, θpp. θpp is the angle from a horizontal line in the 

radial plane to a straight line drawn through the displaced north (N') and south (S') nodes. 

θpp was calculated as follows: 

 
       

  (
   
   
) 

(4.12) 

Where: 

             (4.13) 

                 (4.14) 

δvN is the vertical displacement of the north node (positive downward) 

δvS is the vertical displacement of the south node (positive downward) 
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δhN is the radial displacement of the north node (positive outward) 

δhS is the radial displacement of the south node (positive outward) 

Lhi is the initial radial distance between the north and south nodes 

The rotation of the top of each tube in the longitudinal plane, which is the rotation 

about the parallel axis, was approximated by the calculated rotation in the circumferential 

plane. The vertical displacements and circumferential displacements of the east node and 

the west node of the patch of the top of the tube (shown in Figure 4.11) were used to 

calculate the rotation in the circumferential plane. The calculation was similar to the 

calculation of the rotation in the radial plane in Equation (4.12). The results are given in 

Table 4.5. The rotation in the longitudinal plane given in Table 4.5 is the calculated 

rotation of the top of the tubes in the circumferential plane. The values of the east 

sections are negative indicating the TFG cross sections are rotating counterclockwise 

towards mid-span.  

The rotation of the loading beam of the loading fixture in the parallel plane was 

estimated using the displacements of the center node of the patch on top of G1 (CG1) and 

the center node of the patch on top of G2 (CG2). Figure 4.21 (a) shows a parallel plane 

cross section schematic of the two TFGs in the initial position and an estimated displaced 

position based on the center nodes. The rotation of the loading beam in the parallel plane, 

θLB, was calculated in a similar manner as θpp, but using the vertical displacements and 

the radial displacements of CG1 and CG2, where the radial displacements were used to 

approximate the parallel displacements. 
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For each section (Section A, Section BE, Section BW, etc.), the plane of the 

predominant rotation was determined. The difference between the estimated rotation of 

the top of the tubes, θpp, and the loading beam, θLB, in the parallel plane was calculated, 

termed the relative rotation, θrel, and listed in Table 4.5 for load step 50 of the FE 

analysis. Table 4.5 compares θrel with the calculated rotation in the longitudinal plane. 

The loading fixture was designed to accommodate the larger rotation, at each section 

type, using half-rounds in the load bearing assemblies, which are discussed in Section 

5.9. The half-rounds were aligned to minimize the restraint of the test specimen, and they 

were aligned with the axis of the larger rotation in Table 4.5. For section types with east 

and west sections, the larger values from these two sections were considered in the 

loading fixture design. 

In Table 4.5, as noted above: 

              (4.15) 

A negative value indicates that the rotation of the top of the tube is larger than the 

rotation of the loading beam. The relative rotation in the parallel plane for G2 of Section 

BW is much larger than at the other locations. There is no diaphragm at Section B to 

restrain the rotation, and BW is on the side closest to the two roller supports in the FE 

model.  

The vertical displacements and lateral displacements in the parallel plane of the 

loading rod assemblies were estimated using the vertical displacements, δvG1 and δvG2, 
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and the lateral displacements in the parallel plane (approximated by the radial 

displacements), δhG1 and δhG2, of the center nodes of the top of the TFG tubes, and 

calculated rotations of the loading beam in the parallel plane, θLB. Figure 4.21 (a) shows a 

schematic with the center nodes of the tops of the tubes and the locations of the loading 

rod assemblies (represented by the squares labeled JS for the south loading rod assembly 

and JN for the north loading rod assembly). The schematic shows the initial position and 

an estimated displaced position. Figure 4.21 (b) and (c) show schematics with the 

variables used to estimate the displacements of the loading rod assemblies. The location 

of JS is shown in a longitudinal plane cross section view of the loading rod assembly, 

corresponding to section A-A in Figure 4.1, given in Figure 4.22. The location of JN is 

similar. JS in Figure 4.22 is the same location of JS shown in the parallel plane cross 

section view of the TFGs shown in Figure 4.21 (a) and (b). 

The vertical displacement of the south and north loading rod assemblies were 

estimated as follows: 

                    (4.16) 

                    (4.17) 

LS and LN are the initial lateral distance in the parallel plane between the centerline of the 

given loading rod assembly and the center node of G1 or G2, respectively.  

The lateral displacement in the parallel plane of the south and north loading rod 

assemblies were estimated as follows: 
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             (        ) (4.18) 

             (        ) (4.19) 

The vertical displacements and lateral displacements in the parallel plane of the 

loading rod assemblies at Section A, at Section B, at Section C, and at Section D are 

given in Table 4.6 for load step 50 of the FE model with boundary condition combination 

bc2 under load Case 5. Figure 4.23 is a force-vertical displacement plot for the estimated 

vertical displacements at the north loading rod assembly at Section A during loading. 

Figure 4.24 shows a plan view of the west half of the test setup that shows the lateral 

displacements in the parallel plane of the loading rod assemblies for load step 50. This 

view corresponds to section D-D of the loading fixture shown in Figure 4.1. The location 

of the loading rod assemblies is represented by Plate E (Figure 4.22), which would be the 

first part of the loading rod assembly to collide with the north ground anchor rod. Plate E 

is discussed in Section 5.8. Figure 4.24 shows that the north loading rod assemblies will 

not collide with the north ground anchor rods. 

The estimated vertical displacements of the loading rod assemblies are the 

displacements of the top part of the loading rod assemblies (nodes JS and JN). The bottom 

of the loading rod assemblies should not displace vertically, so the vertical displacements 

of the loading rod assembly are the total required stroke of the jacks. The jacks have a 

stroke capacity of 6.13 in (ENERPAC, 2011). When the vertical displacements of the 

loading rod assemblies are larger than 6.13 in, the jacks will have to be reset. After 

resetting, the jacks can be re-stroked and the jacks can continue to be used to load the test 
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specimen. Loading the test specimen to the Constructability deck placement load of 181 

kip should not require resetting the jacks. However, loading the test specimen beyond the 

maximum load capacity will require resetting the north jacks. A resetting plan was 

created using the estimated vertical displacements of the loading rod assemblies to 

determine when the jacks may need to be reset.  

Table 4.7 presents the resetting plan for the north jacks at Section A, at Section B, 

at Section C, and at Section D for the test to load the test specimen beyond its maximum 

capacity. The load steps of the FE analysis that correspond to the resetting points of the 

jack during the test are shown graphically in Figure 4.23. This figure shows the estimated 

vertical displacement of the north loading rod assembly at Section A and the 

corresponding total load for each load step. For each resetting point, the plan in Table 4.7 

lists the “Current Δ”, which is the incremental vertical displacement since the previous 

load step, and “ΣΔ”, which is the total estimated vertical displacement at that resetting 

point. ΣΔ is equal to δvJ for a given load step. To reduce the number of times the loading 

has to be paused to reset the jacks, multiple jacks will be reset at once. The north jacks at 

Section A, at Section B, and at Section C should be reset twice and the north jacks at 

Section D should be reset once before the expected maximum load is reached. The 

bolded values in the table indicate that the jack should be reset. An additional resetting of 

the jacks at Section A, at Section B, and at Section C may be necessary to reach 

displacements larger than the displacements from load step 50.  

The vertical displacements and circumferential displacements for CG1 and CG2, as 

shown in Figure 4.25, were used to estimate the lateral displacement in the longitudinal 
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plane and the rotation in the longitudinal plane that may develop in the loading rod 

assemblies. Figure 4.25 is a longitudinal plane cross section view of the load bearing 

assembly on G2 corresponding to section C-C in Figure 4.1 (Figure 4.25 is discussed in 

more detail later).  

The displacements of the loading rod assemblies were estimated, not precisely 

calculated, because of uncertainties in the kinematics of the test specimen and the loading 

fixtures in the circumferential plane, as explained next. Table 4.8 gives a summary of the 

estimated displacements for load step 50 of the FE analysis. It was assumed that the 

centerline of the loading rod assembly remains half way between the two load transfer 

channels (the centerline of the loading rod assembly is aligned with the centerline of the 

loading beam shown in Figure 4.25 (a)). Table 4.8 includes the following variables: 

 δc is the circumferential displacement of the center node of the TFG (see 

Figure 4.25 (d)) 

δvJ is the estimated vertical displacement of the loading rod assembly (see 

Equations (4.16) and (4.17), and Figure 4.21) 

hi is the initial height equal to the vertical distance from the bottom of the 

load transfer channels to the mid-thickness of the top wall of the tubes of 

the TFGs (see Figure 4.22 and Figure 4.25) 

hf is the estimated final height  
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αl is the estimated rotation of the loading rod assembly in the longitudinal 

plane  

δl is the estimated longitudinal displacement of the loading rod assembly 

at the top of the load transfer channels 

The final height, the rotation in the longitudinal plane, and the longitudinal displacement 

were estimated as follows: 

            (4.20) 

           (
  
  
) (4.21) 

         (  ) (4.22) 

Here, d is the depth of the load transfer channels. Values are provided for all seven 

sections where the loading fixtures are located.  

The estimated longitudinal displacements and rotations in the longitudinal plane 

of the loading rod assembly are not as reliable as the other displacements. There is 

uncertainty in the vertical displacements and circumferential displacements from the FE 

analysis that could significantly change the estimated longitudinal displacements and 

rotations in the longitudinal plane. For example, small changes in the vertical 

displacements and circumferential displacements could cause large changes in the 

estimated rotations of the loading rod assembly in the longitudinal plane.  
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There is also uncertainty in the kinematics of the loading fixtures. Teflon will be 

placed between the bottom of the load transfer channels and Plate F of the loading rod 

assembly (see Figure 4.22; this is explained further in Section 5.8). The Teflon should 

enable the loading rod assemblies to slip and displace laterally in the parallel plane. 

However, the Teflon may also allow the loading rod assemblies to displace laterally in 

the longitudinal plane.  

Figure 4.25 is a longitudinal plane cross section view of the load bearing 

assembly on G2 at Section DW. This location has the largest longitudinal displacement 

and rotation in the longitudinal plane. The sketch shows the initial position and an 

estimated displaced position of the load bearing assembly and loading beam for load step 

12 (approximately the Constructability limit state load), load step 35 (the maximum 

load), and load step 50 (beyond the maximum load). The loading beam and the top plates 

of the load bearing assembly would ideally remain vertical and are therefore, shown 

without a rotation in the longitudinal plane. The loading rod assembly would ideally 

remain vertical (Figure 4.22). The vertical centerline of the loading beam indicates that 

for this to be true, the loading beam and everything attached to it would have to displace 

laterally in the longitudinal plane. This displacement may be larger than the available 

distance between the edge of the main rod of the loading rod assembly and the load 

transfer channels. Therefore, the loading beam, the load bearing assembly plates attached 

to the loading beam, and the loading rod assembly may rotate in the longitudinal plane at 

Section DW.  
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In the tests, the lateral displacements in the longitudinal plane and the rotations in 

the longitudinal plane will probably be smaller than estimated for Section DW because 

this section is closest to the rollers used in the FE model (Section 4.3.2). The friction 

between the test specimen and the bearings of the test specimen should prevent some of 

the lateral displacements that the rollers in the FE model allow. In addition, the main rod 

of the loading rod assembly will bend as it bears against the load transfer channels, and 

the loading rod assembly may not remain vertical. Based on the estimated displacements 

in Table 4.8 for load step 50 of the FE analysis, the main rod of the north loading rod 

assembly at DW may bear against the top of the load transfer channel. The calculated 

longitudinal displacement is 0.51 in, but there is only 0.50 in clearance between the main 

rod and the load transfer channels (Figure 4.22). 
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Table 4.1: Load combinations for Constructability limit states 

Limit State SW DC LLC 

Constructability 
(girder erection) 

1.25 - - 

Constructability 
(deck placement) 

- 1.25 1.75 

 

Table 4.2: Load combinations for Service II and Strength I limit states 

Limit State DC DW LL 

Service II 1.00 1.00 1.30 

Strength I 1.25 1.50 1.75 
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Table 4.5: Rotations at load fixture sections for load step 50  

Section 

Relative Rotation 

in Parallel Plane 

(θrel) 

Rotation in 

Longitudinal 

Plane 

Plane with 

Largest Rotation 

G1 G2 G1 G2 G1 G2 

A 0.0036 0.0073 -0.0006 -0.0024 P P 

BE 0.0047 -0.0232 -0.0106 -0.0324 
P P 

BW 0.0149 -0.0617 0.0097 0.0470 

CE 0.0073 0.0015 -0.0176 -0.0441 
L L 

CW 0.0098 0.0048 0.0178 0.0505 

DE 0.0026 -0.0042 -0.0222 -0.0532 
L L 

DW 0.0054 0.0044 0.0232 0.0592 

 

 

Table 4.6: Estimated displacements in parallel plane of loading rod assemblies for 

load step 50 

Section 

Vertical 

Displacement,  

δvJ (in) 

Lateral 

Displacement in 

Parallel Plane, 

 δhJ (in) 

South North South North 

A -3.606 -17.348 6.88 6.61 

B -3.365 -17.481 6.51 8.86 

C -2.470 -12.945 4.88 5.21 

D -1.176 -6.977 2.45 2.42 
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Figure 4.2: Free body diagram and corresponding moment diagram for (a) idealized 

uniformly distributed load, (b) concentrated load simulation with even number of 

segments, and (c) concentrated load simulation with odd number of segments   
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(a) Ideal 2/3-scale TFG test specimen 

 

(b) Bridge deck cross section segments 

 

(c) Idealized load (assumed constant over the span) 

Figure 4.3: Radial plane cross section view of TFG bridge   
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(a) Case 1 

 

(b) Case 2 

 

(c) Case 3 and Case 4 

Figure 4.4: Radial plane cross section views of load cases  
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(d) Case 5 

 

(e) Case 6 

Figure 4.4 (cont’d): Radial plane cross section views of load cases   



www.manaraa.com

113 

 

 

  

(a
) 

C
as

e 
1
 a

n
d
 C

as
e 

2
 

(b
) 

C
as

e 
3
 a

n
d
 C

as
e 

4
 

(c
) 

C
as

e 
5
 a

n
d
 C

as
e 

6
 

F
ig

u
re

 4
.5

: 
E

le
v
a
ti

o
n

 v
ie

w
s 

o
f 

lo
a
d

 c
a
se

s 
 



www.manaraa.com

114 

 

 

(a) 3-D perspective view 

 

 

 

(b) Cross section view  (c) Plan view 

Figure 4.6: Preliminary sketches of loading beam and load transfer channels of 

loading fixture - radial loading  
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(a) 3-D perspective view 

 

 

 

(b) Cross section view  (c) Plan view 

Figure 4.7: Preliminary sketches of loading beam and load transfer channels of 

loading fixture - parallel loading  
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(a) Areas divided by radial planes 

 

(b) Areas divided by parallel planes 

Figure 4.8: Areas for patch loads 
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Figure 4.9: Force-vertical displacement response from web node of G1 for load 

cases (Ma, 2012) 

 

Figure 4.10: Force-vertical displacement response from web node of G2 for load 

cases (Ma, 2012)  
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(a) Radial plane cross section view 

 

(b) Plan view of G1 at Section DE  

Figure 4.11: Node locations on TFGs  
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Figure 4.12: Force-vertical displacement response of top center node of G1 (Ma, 

2012) 

 

Figure 4.13: Force-vertical displacement response of top center node of G2 (Ma, 

2012)  
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Figure 4.14: Force-radial displacement response of top center node of G1 (Ma, 2012) 

 

Figure 4.15: Force-radial displacement response of top center node of G2 (Ma, 2012)   
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(a) bc1 

 

 

(b) bc2 

 

Figure 4.16: Boundary condition combinations studied with FE models 



www.manaraa.com

122 

 

 

Figure 4.17: Radial plane cross section view of TFG displacements 

  



www.manaraa.com

123 

 

 

Figure 4.18: Parallel plane cross section view of initial and estimated displaced 

position of preliminary loading fixture design  

 

 

Figure 4.19: Parallel plane cross section view at Section A of initial and estimated 

displaced position of final loading fixture design  
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(a) Nodes on TFG 

 

(b) Variables used for calculations 

Figure 4.20: Schematics used to calculate rotations of top of tubes in radial plane   
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(b) Variables used for south loading rod assembly 

 

 

(c) Variables used for north loading rod assembly 

 

Figure 4.21 (cont’d): Schematics used to calculate displacements of loading fixtures 
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Figure 4.22: Longitudinal plane cross section view of loading rod assembly 
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Figure 4.23: Force-displacement plot for north loading rod assembly at Section A  
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(a) Initial position  (b) Load step 12 (Constructability) 

 

 

 

(c) Load step 35 (maximum load)  (d) Load step 50  

(beyond maximum load) 

Figure 4.25: Longitudinal plane cross section view of G2 at Section DW   
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CHAPTER 5: DESIGN OF TEST LOADING FIXTURES 

5.1. Introduction 

This chapter explains the design of the loading fixtures for the tests. Figure 5.1 is 

a parallel plane cross section view of the test specimen and a loading fixture where the 

main parts of the loading fixture are given. Section 5.2 provides an overview of the 

loading fixtures. The loads used for the designs are then discussed in Section 5.3. Four 

different loading fixture designs are required, as explained in Section 5.4. Stability of the 

loading fixtures is explained in Section 5.5. The designs of the load transfer channels are 

explained in Section 5.6 and the loading beam is explained in Section 5.7. The design of 

the loading rod assemblies is explained in Section 5.8. The design of the load bearing 

assemblies that apply the load to the test specimen is explained in Section 5.9. At Section 

A, the loads are applied to the diaphragm instead of directly on the TFGs. The capacities 

of the connections between the diaphragms and TFGs were evaluated for this load, as 

explained in Section 5.10. 

5.2. Overview of Loading Fixtures 

The design of the loading fixtures for the tests has four main goals. The first goal 

is to allow loading and unloading of the test specimen multiple times. The second goal is 

to be able to load the test specimen safely beyond its maximum load capacity. The third 

goal is to allow the test specimen to respond without restraint from the loading fixtures so 

that the loading fixtures do not influence the response to the loads. The fourth goal is to 

keep the applied loads vertical.  
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The test specimen is loaded using seven loading fixtures. Figure 5.1 is a parallel 

plane cross section view of the test specimen with a loading fixture. Each loading fixture 

applies one concentrated load to each TFG. The loading fixtures are located at the seven 

parallel cross sections explained in Section 3.2. At each loading fixture, two “loading rod 

assemblies” pull down on a wide flange beam (the “loading beam”) above the test 

specimen. Each loading rod assembly is comprised of one hydraulic jack and a series of 

steel rods, steel plates, and half-rounds (steel round bars cut in half lengthwise). The 

loading beam bears on the test specimen through two “load bearing assemblies.” Each 

load bearing assembly is comprised of a series of steel components including plates, half-

rounds, and a hollow-structural-section (HSS). The loading rod assemblies also pull up 

on a pair of laced channels (the “load transfer channels”) below the test specimen. The 

load transfer channels are anchored by the “ground anchor rods” that provide reactions to 

the force of the loading rod assemblies. 

Parallel plane cross section views of the loading fixtures are shown in Figure 5.2, 

Figure 5.3, Figure 5.4, and Figure 5.5, at Section A, at Section B, at Section C, and at 

Section D, respectively. As shown, for each of these section types, there is a 

corresponding loading fixture.  

Figure 5.6 is a parallel plane cross section view at Section A corresponding to 

Detail A of Figure 5.2. Figure 5.7 is a parallel plane cross section view at Section B 

corresponding to Detail B of Figure 5.3. Figure 5.8 is a parallel plane cross section view 

at Sections C and D corresponding to Detail C of Figure 5.4 and Detail D of Figure 5.5.  
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Figure 5.9 is a longitudinal plane cross section view at Section A corresponding to 

section A-A of Figure 5.2. Figure 5.10 is a longitudinal plane cross section view at 

Section B corresponding to section B-B of Figure 5.3. Figure 5.11 is a longitudinal plane 

cross section view at Sections C and D corresponding to section C-C of Figure 5.4 and 

section D-D of Figure 5.5. 

A longitudinal plane cross section view of the loading rod assembly is shown in 

Figure 5.12, which corresponds to section A-A in Figure 5.1. Full length longitudinal 

plane cross section views of the load bearing assembly at Section A, at Section B, and at 

Sections C and D are shown in Figure 5.13, Figure 5.14, and Figure 5.15, respectively. 

Figure 5.13 corresponds to section B-B in Figure 5.1. Figure 5.14 and Figure 5.15 

correspond to section C-C in Figure 5.1. 

The designs of the components of the loading fixtures are explained in Section 5.3 

through Section 5.9. For the designs of the components, the term “width” refers to the 

dimension in the longitudinal plane, the term “length” refers to the dimension in the 

parallel plane, and the term “thickness” refers to the dimension in the vertical direction. A 

summary of the dimensions of the plates and bars of the loading fixtures is given in Table 

5.1. A summary of the lengths of the HSS, the load transfer channels, the loading beam, 

and the half-rounds is given in Table 5.2.  

5.3. Design Loads for Loading Fixtures 

The loading fixtures load the test specimen with concentrated loads to simulate 

the idealized uniformly distributed load (as described in Section 4.2). From the FE model 
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with boundary condition combination bc2 under load Case 5, the nominal total load of 

the test specimen when it reaches its maximum load capacity is expected to be 327 kip. 

Note that the total reaction at each end of the test specimen is 163.5 kip, which is much 

less than the total reaction applied to the bearings and the footings during the previous 

tests by Kim (Kim, 2005; see Section 3.8). The loading fixture designs are based on the 

applied loads when the test specimen reaches its maximum load capacity, multiplied by a 

factor of safety (FS) of 1.3. The factored total load when the test specimen reaches its 

load capacity is expected to be 425 kip. Fourteen hydraulic jacks will provide the load for 

the tests. Each jack provides the same load. The expected maximum load at each jack is 

20.4 kip and the factored load is 26.6 kip. These values are 1/16
th

 of the total load. The 

values were calculated using the concentrated load simulation explained in Section 4.2.  

The jacks are Enerpac RCH-326 hollow plunger cylinders with a 30 ton capacity 

and maximum operating pressure of 10 ksi (ENERPAC, 2012). Figure 5.16 is a 

photograph of a fully retracted jack, which is 13 in tall. When fully extended, the jack has 

a stroke of 6.13 in. The outer diameter is 4.5 in and the center hole diameter is 1.31 in. A 

port at the bottom connects to a hydraulic hose that provides oil. In the tests, a single 

pump will supply oil to all of the jacks. A series of hydraulic hoses and manifolds will 

connect the pump to the jacks. Gauges will measure the oil pressure during the tests. 

Load cells will be used measure the force at the loading rod assemblies (explained in 

Section 5.8). 

One jack is located within each loading rod assembly. Each loading fixture has 

two loading rod assemblies. The loading rod assemblies are arranged on the loading beam 
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to produce a load on G2 that is 1.05 times the load on G1. This difference accounts for 

the different deck area supported by each TFG, as discussed in Section 4.2.3. Figure 5.17 

(a) shows a sketch of a simply supported beam used to find the relative positions of the 

two loading rod assemblies of each loading fixture. The figure also includes the 

corresponding moment diagram. In the analysis, the loading beam was simulated by the 

simply supported beam, the load bearing assembly at G1 was simulated by a pin, the load 

bearing assembly at G2 was simulated by a roller, and the loading rod assemblies were 

simulated as concentrated loads on the simply supported beam. One loading rod assembly 

position was chosen and the other was determined to produce a 1.05 load ratio at the load 

bearing assemblies.  

The loading rod assembly positions are designed to accommodate the expected 

displacement of the test specimen and the expected displacement of the loading fixtures 

determined from the kinematic studies described in Section 4.3.3. The south loading rod 

assemblies are located 18.625 in away from the centerline of G1. The north loading rod 

assemblies at Section B, at Section C, and at Section D are located 21 in away from the 

centerline of G2. The north loading rod assembly at Section A is located 20.5 in away 

from the centerline of G2. Section A is different to accommodate loading on the mid-

span diaphragm, instead of on the TFGs, while providing the 1.05 load ratio.  

The nominal loads at the load bearing assemblies on G1 and G2 when the test 

specimen reaches its maximum load are expected to be 19.9 kip and 20.9 kip, 

respectively, and the corresponding factored loads are 25.9 kip and 27.2 kip. Although 

the actual distance between the TFGs is different at each parallel section, the difference is 
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small and does not have a significant effect on the loads on the test specimen. Table 5.3 

lists the nominal and factored maximum moments in the loading beam for the four 

different parallel sections. 

The reactions in the ground anchor rods and the maximum moment in the load 

transfer channels were determined from statics based on the position of the loading rod 

assemblies and ground anchor rods. Figure 5.17 (b) is a sketch of a simplified beam and 

corresponding moment diagram used to determine the load effects. The analysis treats the 

load transfer channels as a simply supported beam with the south ground anchor rod as a 

pin, the north ground anchor rod as a roller, and the two loading rod assembly loads as 

upward concentrated loads. The distances between the loading rod assemblies and the 

ground anchor rods are different at each parallel section due to the horizontal curvature of 

the test specimen (Section 5.8). Table 5.3 lists the nominal and factored maximum 

moments in the load transfer channels for the four different types of loading fixtures and 

Table 5.4 lists the ground anchor rod reactions for the four different types of loading 

fixtures.  

Table 5.4 includes the demand-to-capacity ratios (DCRs) for the ground anchor 

rods of each section. A DCR is the ratio of the factored demand divided by the factored 

capacity. The demand is multiplied by a load factor (in this case, FS equal to 1.3) and the 

capacity is multiplied by an appropriate ϕ factor. The DCRs of the ground anchor rods 

use the design load of 112.5 kip as the factored capacity. As discussed in Section 3.9, the 

ground anchor rods were tested for 1.33 times the design load indicating that the design 
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load is a reduced (factored) capacity. All of the DCRs are less than 1.0, which means that 

the ground anchor rods will not be overloaded.  

5.4. Differences Between Loading Fixture Types 

Although the overall schematic of the loading fixtures is the same, four types of 

loading fixtures are needed (Figure 5.2 through Figure 5.15). The lateral distance in the 

parallel plane between the centerline of the ground anchor rods and the centerline of the 

test specimen is different at each section type. The distances between the centerlines 

affect the maximum moment in the load transfer channels (see Section 5.3 and Section 

5.6) and the lateral distance in the parallel plane between the north loading rod assembly 

and the north ground anchor rod. In addition, the distance between the TFGs in the 

parallel plane changes at each section due to the curvature of the test specimen. Section A 

has the smallest distance, 96.0 in, and Section D has the largest distance, 97.4 in. The 

differences have a small effect on the estimated rotation in the parallel plane of the 

loading beams. However, the differences affect the location of the loading rod assemblies 

on the loading beam. The four loading fixtures have different locations in order to 

achieve the 1.05 load ratio at each section.  

Another difference between the types of loading fixtures is due to the diaphragms 

at Section A and at Section C, but not at Section B and at Section D. The diaphragms 

influence the kinematics of the test specimen, such as the relative displacement and 

relative rotation between the two TFGs.  
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At Section A, the loads are applied to the diaphragm rather than the TFGs, so that 

a concentrated load is not applied to the top of the tube. Yielding of the tubes and, 

ultimately, failure of the tubes is expected at Section A (mid-span) and applying the load 

on the tubes would affect yielding and failure of the tubes. As shown in Figure 5.6, the 

centerlines of the load bearing assemblies at Section A are located 3 in toward the 

centerline of the test specimen from the ends of the diaphragm. 

5.5. Stability of Loading Fixture 

Certain aspects of the loading fixtures are designed to provide stability. This 

section explains the stability concerns. There are three stability conditions related to the 

forces within the loading fixture that are discussed. First, for Stability Condition 1, 

stability from the load-height effect is discussed. To provide stability of the loading 

beam, the loading rod assemblies pull down at the bottom of the loading beam, and the 

load bearing assemblies push up at the top of the loading beam. Second, for Stability 

Condition 2, stability related to Plate B bearing on the half-rounds of the loading rod 

assemblies is discussed. Third, for Stability Condition 3, stability of the HSS within the 

load bearing assemblies is discussed. 

There are three different half-round loading cases to consider for stability. The 

first half-round loading case is the loading beam bearing on the load bearing assembly 

half-rounds at Section A (see Figure 5.2 and Figure 5.6) and at Section B (see Figure 5.3 

and Figure 5.7). The load bearing assembly half-rounds are aligned in the longitudinal 

plane. In this orientation, the loading beam is simply supported and therefore, inherently 
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stable. The second half-round loading case, which is Stability Condition 1, is the loading 

beam bearing on the load bearing assembly half-rounds at Section C (see Figure 5.4 and 

Figure 5.11) and at Section D (see Figure 5.5 and Figure 5.11). At these sections, the load 

bearing assembly half-rounds are aligned in the parallel plane. In this orientation, the 

load-height effect is used to provide stability. The third half-round loading case, which is 

Stability Condition 2, is Plate B bearing on the loading rod assembly half-rounds (Figure 

5.12).  

5.5.1. Stability Condition 1: Load-Height Effects 

The first stability concern, Stability Condition 1, is stability/instability due to the 

load-height effect. The load-height effect can be seen by examining Figure 5.18. Figure 

5.18 shows simplified models of (a) a short rectangle (square) and (b) a tall rectangle, 

acted on by a pair of forces assumed to be eccentric to the vertical centerline of the 

rectangle. The eccentricity simulates the actual unintentional eccentricities in the loading 

fixtures. Three orientations are shown. The first orientation is the case where the forces 

put the rectangle into tension in an unstable position. The second orientation is the case 

where the forces put the rectangle into tension in a stable position. The third orientation is 

the case where the forces put the rectangle into compression in an unstable position.  

For the rectangles in tension in an unstable position, the rectangle will rotate 

clockwise until the forces are aligned and it becomes stable. For the rectangle in 

compression in an unstable position, the rectangle must rotate much farther until the 

rectangle is in tension rather than compression to be stable. A comparison of the two 
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different size rectangles shows that when the eccentricity is small compared to the height 

(simulated by the tall rectangle), the tall rectangle has to rotate less than the short 

rectangle to achieve a stable position. The larger vertical distance between the tension 

forces increases the stability.  

Figure 5.19 shows Stability Condition 1 for the loading beam from the loading 

fixture design for Section C and Section D. When the force from the load bearing 

assembly is eccentric to the centerline of the loading beam, the loading beam will try to 

rotate in the longitudinal plane until the force from the load bearing assemblies align with 

the resultant vertical forces from the loading rod assemblies. A larger vertical distance 

between the forces of the load bearing assemblies and the forces of the loading rod 

assemblies on the loading beam increases the stability of the loading beam. For the 

loading fixtures, the HSS in the load bearing assemblies increase the upward vertical 

distance to the location of the force on the loading beam from the load bearing 

assemblies. The HSS were checked for stability and this check is discussed later as 

Stability Condition 3.  

5.5.2. Stability Condition 2: Bearing on Half-Round 

A second stability concern, Stability Condition 2, is bearing on the cylindrical 

half-rounds at the loading rod assemblies. Figure 5.20 and Figure 5.21 is a series of 

simplified sketches from a stability analysis with two different sized plates bearing on a 

half-round. The thin plate in Figure 5.20 has a height (thickness) H = 0.5rHR, where rHR is 

the radius of the half-round, and the thick plate in Figure 5.21 has a height H = 1.5rHR. A 
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vertical force, P, is applied to the top of the plate and the reaction, R, acts perpendicular 

to the half-round at the contact point. Figure 5.20 (a) and Figure 5.21 (a) show stable 

initial positions when P and R are aligned.  

One stability consideration for Stability Condition 2 is the effect of applying P 

eccentrically by an amount eacc as shown in Figure 5.20 (b) and Figure 5.21 (b). The plate 

will rotate because the forces are misaligned. As shown in Figure 5.20 (c), if the applied 

force remains vertical, the plate will rotate by θacc, which is equal to (using small angle 

theory): 

      
    

     
 (5.1) 

Where H is the height (thickness) of the plate. Since the plate has rotated, the normal 

force at the contact point is not vertical. It is assumed, however, that the frictional force 

plus the normal force at the contact point provide a vertical reaction, R.  

The height (thickness) of the plate is another stability consideration for Stability 

Condition 2. Only a plate with a height less than the radius of the half-round will be 

stable when it rotates due to eacc (note alignment of P and R in Figure 5.18 (c)). 

Note that Figure 5.20 and Figure 5.21 show the plate rotated, but during the tests, 

the half-round will rotate as depicted in Figure 5.22, which shows the initial position and 

an estimated final position at the top of the loading rod assembly for load step 50 of the 

FE analysis.  
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Figure 5.20 (d) shows the thin plate rotated by θ. P has an eccentricity of etotal, and 

R has an eccentricity of e at the contact point. For this analysis, we assume θ equals θLB 

for load step 50 from the FE results. Figure 5.20 (e) shows the location of R (at the 

contact point), P (eccentric from the centerline of the plate by eacc), the half-round, and 

the plate (eccentric from the centerline of the half-round by eadd). Assuming an initial 

accidental eccentricity, the total eccentricity between P and the centerline of the half-

round is equal to:  

                  (5.2) 

In this equation, eadd is the additional eccentricity of P due to θ, which is equal to: 

         (5.3) 

To be stable, etotal has to be less than the arc length that the plate rolls along, which is 

equal to:  

          (5.4) 

A stable position is possible only if the height is less than the radius, as follows: 

            (5.5) 

              (5.6) 
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       (     ) (5.7) 

       (5.8) 

Since eacc is positive, the inequality of Equation (5.8) must be satisfied for the inequality 

of Equation (5.7) to be satisfied. When this condition is met, the eccentricity of P with 

respect to R (at the contact point), called eforce, is such that the moment resists the rotation 

and tends to return the plate towards its initial position. 

Figure 5.21 is similar to Figure 5.20, but the plate is thicker and H > rHR. An 

eccentricity makes the thick plate unstable. Figure 5.21 (d) and (e) show the rotated thick 

plate and vertical load corresponding to θLB from load step 50 of the FE analysis. In this 

case, rHR < H, so the inequality of Equation (5.7) cannot be satisfied, even if eacc is zero. 

The eccentricity of P with respect to R produces a moment that tends to increase the 

eccentricity and the place can rotate off the half-round. Therefore, the thickness of Plate 

B has to be less than the radius of the half-round at the loading rod assembly (see Figure 

5.22).  

5.5.3. Stability Condition 3: HSS Stability 

The stability analysis for the HSS at Section A is shown schematically in Figure 

5.23. The HSS at Section A was analyzed because it is taller than the HSS at the other 

sections. Figure 5.23 (a) shows a parallel plane cross section view of the load bearing 

assembly at Section A in its initial position. The initial height, Hi, is the distance from the 

bottom of the HSS to the top of the half-round in contact with Plate J (“PLJ”, explained in 
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Section 5.9). Figure 5.23 (b) shows the displaced position of the load bearing assembly at 

load step 50 from the FE analysis (after the test specimen reaches its maximum load 

capacity). PLJ has rotated by θPLJ, which is equal to the rotation in the parallel plane of 

the loading beam (θLB, explained in Section 4.3.3). The HSS and other parts of the load 

bearing assembly (assumed rigid) have rotated by θTFG, which is equal to the rotation in 

the parallel plane of the closest tube (θpp, explained in Section 4.3.3). The relative 

rotation, θrel, between θLB and θpp causes PLJ to have a different contact point on the half-

round in the displaced position than in the initial position. However, this effect is small 

and is neglected. 

Figure 5.23 (c) shows the displaced position of the load bearing assembly with 

PLJ replaced with a vertical force at the contact point. There is an eccentricity, e, between 

the centerline of the HSS and the centerline of the force. The final vertical height is Hf. 

The change in height from Hi to Hf is small and Hi was used for the calculations in the 

displaced position. 

The eccentric force produces a moment at the base of the HSS. A stress analysis 

at the base of the displaced HSS is depicted in Figure 5.23 (d) (the base is shown as 

horizontal for convenience). The total stress is equal to the uniform compression stress 

caused by the applied load plus the stress caused by the moment due to the eccentricity of 

the applied load. The uniform compression stress was calculated as the vertical force 

divided by the cross sectional area of the HSS. The bending moment stress was 

calculated as the vertical force multiplied by the eccentricity divided by the elastic 

section modulus of the HSS. 
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If the total stress at the base of the HSS is compressive everywhere, the HSS is 

stable. If the left side of the HSS is in tension, the HSS may start to tip. The HSS at 

Section B, at Section C, and at Section D are short enough and the rotation is small 

enough so that the total stress is in compression. The south edge of the HSS at Section A 

may be in tension due to the larger HSS height. Therefore, to prevent tipping, welds 

between the HSS and the bearing plate (Section 5.9) are arranged to be in the longitudinal 

plane and the bearing plate is made wider than the HSS. 

5.6. Load Transfer Channels and Attachments 

The test setup, test loads, kinematics of the test specimen and the loading fixtures, 

and stability conditions all influenced the design of the loading fixtures. The factored 

demand loads from the analysis of the FE model with bc2 supports under load Case 5 

(Section 4.2.3 and Section 4.3.2) were used for the design. The AISC Steel Construction 

Manual (2005) was used to calculate the capacities of the loading fixture components. At 

each loading fixture, as shown in Figure 5.1, the loading rod assemblies pull down on the 

loading beam above the test specimen. The loading beam bears on the test specimen 

through the load bearing assemblies. The loading rod assemblies also pull up on the load 

transfer channels below the test specimen, which are anchored by the ground anchor rods. 

The designs of the load transfer channels and the attachments (stiffeners, tie plates, and 

bracing) to support the load transfer channels are explained in this section. 

The load transfer channels are back-to-back C12x20.7 ASTM A992 grade 50 steel 

channels. The load transfer channels are 2 in apart, and are laced together with steel tie 
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plates. The ground anchor rods and the main rods of the loading rod assemblies fit in the 

gap between the backs of the channels.  

The load transfer channels were treated as a simply supported beam with two 

concentrated loads at the location of the loading rod assemblies (Figure 5.17 (b)). The 

beam was analyzed for the forces at load step 35, and for the loading rod assembly 

displacements at load steps 35 and 50. The factored concentrated loads each equal 26.6 

kip. The shear and moment results in the load transfer channels at Section A were the 

largest demands, which were used to design the load transfer channels. The maximum 

factored shear is 34.0 kip and the maximum factored moment is 1355 kip-in. It was 

assumed that one load transfer channel carries half of the shear, and initially it was 

assumed that one load transfer channel carries half of the moment. The deflections of the 

load transfer channels were determined at the locations of the concentrated loads. These 

locations correspond to the estimated locations of the north and south loading rod 

assemblies (Section 4.3.3) for load step 35 (when the test specimen reaches its maximum 

load capacity) and load step 50 (after the test specimen reaches its maximum load 

capacity). The deflections are given in Table 5.5.  

The shear capacity of one load transfer channel based on AISC Equation (G2-1) is 

102 kip. AISC Chapter F was used to determine the flexural capacity of an individual 

load transfer channel. The web and flanges are compact based on AISC Table B4.1. 

AISC Section F2 for channels with a compact web and flanges bent about their major 

axis was used. Equations (F2-5) and (F2-6) were used to calculate Lp and Lr, respectively. 

Lr is 114 in, less than the unbraced length, Lb, of 216 in, which is the parallel distance 
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between the ground anchor rods. The lateral-torsional buckling capacity was calculated 

using Equation (F2-4) with Cb conservatively taken as 1.0 in Equation (F2-3). The 

capacity of a single load transfer channel is 303 kip-in, much less than half of the 

maximum moment demand. Therefore, the flexural capacity of two individual C12x20.7 

was not adequate.  

The two load transfer channels were, therefore, designed as a built-up member to 

create a larger flexural capacity. The two load transfer channels were laced together with 

tie plates. Figure 5.24 shows the cross section dimensions of the built-up load transfer 

channels. The area, polar moment of inertia, warping product of inertia, nominal plastic 

moment (Mp), and nominal yield moment (My) were estimated to be twice the 

corresponding value for a single load transfer channel. The moment of inertia about the 

weak axis (Iy) was calculated using the centerline dimensions and the parallel axis 

theorem. The calculated Iy is 48.4 in
4
, much larger than twice the Iy = 3.86 in

4
 of each 

channel.  

A larger Iy and corresponding ry increases Lp and Lr. Lp was re-calculated using 

Equation (F2-5) and equals 84.5 in. Lr was calculated by setting the elastic buckling 

moment limit of the built-up member equal to 70% of the nominal yield moment of the 

built-up member. The elastic buckling moment limit was set equal to the stress from 

Equation (C-F2-2) multiplied by Sx, and the result was solved for Lb. The resulting Lb is 

Lr, which equals 239 in.  
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The nominal flexural strength of the built-up load transfer channels as a function 

of unbraced length is shown in Figure 5.25. Linear interpolation between the points (Lp, 

Mp) and (Lr, 0.7My) was used to find the nominal flexural strength of the built-up load 

transfer channels with an Lb of 216 in. The nominal flexural strength of the built-up load 

transfer channels was determined to be 1665 kip-in, which results in a factored flexural 

strength of 1500 kip-in. For the built-up load transfer channels, the flexural DCR is 0.90. 

The shear DCR was calculated assuming each load transfer channel carries half of 

the shear. The resulting DCR is 0.17.  

The two load transfer channels are laced together with steel tie plates. Figure 5.26 

shows the tie plate arrangement along the load transfer channels at each section type. 

Figure 5.26 shows that the south end tie plates and intermediate tie plates are between the 

ground anchor rods, and the north end tie plate is beyond the north ground anchor rod. 

Figure 5.27 shows cross section views and plan views of the three types of tie plates. The 

tie plates are fabricated from ASTM A572 grade 50 steel. The south end tie plates and the 

intermediate tie plates consist of a pair of plates (Figure 5.27 (a), (c), and (d)). For the 

pair of south end tie plates and the three pairs of intermediate tie plates, one tie plate is 

welded to the top of the load transfer channels and one tie plate is welded to the bottom 

of the load transfer channels. The south end tie plates are 4.5 in wide, 4.5 in long, and 

0.25 in thick. The intermediate tie plates are 4.5 in wide, 2.75 in long, and 0.25 in thick. 

The north end tie plate is a single tie plate bolted between the load transfer channels 

(Figure 5.27 (b), (e), and (f)) to make the assembly of the loading fixture easier. The 

north end tie plate is 2 in wide, 5 in long, and 12 in thick (deep).  
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As suggested by AISC Section F13.4, AISC Section E6.2 for built-up 

compression members was used to design the tie plate spacing. The spacing of the tie 

plates is shown in Figure 5.26 for the west half of the test specimen. The maximum 

allowed spacing between the tie plates is 64.75 in. This spacing is controlled by the 

effective slenderness ratio, Ka/ri, of a single load transfer channel between the tie plates, 

which cannot exceed three-fourths the governing slenderness ratio of the built-up load 

transfer channels, where the spacing between the tie plates is a. The largest spacing used 

in the loading fixtures is 59 in at Section C. 

AISC (2005) also provides dimensional limits for the tie plates. AISC Section 

E6.2 stipulates that for end tie plates, the length of the tie plate, LTIE in Figure 5.28, has to 

be larger than or equal to the distance between the lines of welds connecting the tie plate 

to the load transfer channels of the built-up member, which is equal to WTIE in Figure 

5.28. For intermediate tie plates, LTIE has to be larger than or equal to half of WTIE. In 

addition, the thickness of the tie plate has to be larger than or equal to 0.02WTIE. All of 

the welded tie plate sizes meet these requirements.  

Tie plates are designed “to provide a shearing strength normal to the axis of the 

member equal to two percent of the available compressive strength of the member” 

according to AISC Section E6.2 (2005). The available compressive strength (i.e., the 

factored capacity) of the built-up load transfer channels was computed using AISC 

Section E7 and using (KL/r)m from Equation (E6-2) equal to 124. Section E7 was used 

because the webs of the load transfer channels are slender based on AISC Table B4.1. 

The flanges are noncompact based on AISC Table B4.1. The critical stress, Fcr, was 
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calculated from Equation (E7-3). In this equation, Qa was calculated from Equation (E7-

16), and be was calculated from Equation (E7-17). The nominal compressive strength of 

the built-up load transfer channels is 189 kip, which was calculated using Equation (E7-

1). The available compressive strength (i.e., factored capacity) of the built-up load 

transfer channels is 170 kip. 

Two percent of the available compressive strength of the built-up load transfer 

channels is 3.4 kip. This is the demand on the tie plates required by AISC (2005). 

However, it was decided to use two percent of the resultant compressive force in the 

built-up load transfer channels due to the factored maximum moment in the load transfer 

channels. The moment produces a flexural stress in the built-up load transfer channels 

equal to the moment divided by the elastic section modulus about the strong axis of the 

member. The elastic section modulus was taken as twice the Sx = 21.5 in
3
 of each load 

transfer channel. The resultant compressive force was estimated by multiplying the 

flexural stress in the built-up load transfer channels by the total area of the built-up load 

transfer channels. Two percent of the resultant compressive force is 7.7 kip, which is 

conservative compared with the specified AISC demand. 

The shear strength capacity of the tie plates was calculated using AISC Equation 

(G2-1). The shear strength of the south end tie plates and intermediate tie plates is 33.8 

kip. The shear strength of the north end tie plate is 720 kip, which is much larger because 

the cross section area of the north end tie plate in the longitudinal plane is large (see 

Figure 5.27(b)). The corresponding DCRs are 0.23 and 0.01, respectively. The demands, 
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capacities, DCRs, and AISC equations used to calculate the capacities are given in Table 

5.6. 

The south end tie plates and the intermediate tie plates are welded to the load 

transfer channels. The welds are shown in Figure 5.27. The weld lengths for the tie plates 

are designed using AISC Section E2 requirements and are based on the IS 800:2007 

guidelines (taken from Sai, 2008) shown in Figure 5.29. The size and strength of the 

welds were determined using AISC Section J2. The welds are 1/8 in fillet welds.  

The demand on the tie plate welds was taken as 7.7 kip. The capacity of the welds 

was calculated using AISC Equation (J2-3). The capacity of the south end tie plate welds 

is 36.2 kip. The capacity of the intermediate tie plate welds is 19.5 kip. The south end tie 

plate welds have a DCR of 0.21 and the intermediate tie plate welds have a DCR of 0.39. 

The north end tie plate will be installed in the field for easier assembly and 

disassembly of the loading fixtures. The north end tie plate is bolted to the load transfer 

channels with two 0.75 in diameter ASTM A325 bolts as shown in Figure 5.27. The 

demand on the connection was taken as 7.7 kip. The connection was evaluated as a slip-

critical connection using AISC Section J3.8. The design slip resistance (i.e., the factored 

capacity) equals 9.4 kip, calculated using Equation (J3-4). The resulting DCR is 0.82. 

The bolt spacing, as shown in Figure 5.27 (f), meets the requirements in AISC Section J3. 

The loading rod assemblies pull up on the built-up load transfer channels and the 

loads are resisted by ground anchor rods. A standard Dywidag nut and plate, PLA, 
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transfer the load to each ground anchor rod, as shown in Figure 5.1. A plan view of PLA 

is shown in Figure 5.30 (a). PLA is 8 in wide, 5 in long, and 1.5 in thick.  

The flexural demand on PLA was taken as the maximum moment determined by 

treating PLA as a simply supported beam. This beam has a 2.28 in length, equal to the 

distance between the centerlines of the webs of the load transfer channels (Figure 5.24). 

The assumed simply supported beam is loaded at mid-span by a concentrated load equal 

to the maximum factored ground anchor rod reaction (34.0 kip). The maximum moment 

is 19.4 kip-in. The shear demand on PLA was taken as half of the 34.0 kip load. The 

bearing demand on PLA was taken as 34.0 kip. 

The flexural capacity of PLA was calculated with AISC Equation (F11-1). The 

plastic section modulus was calculated using the parallel plane cross section at section A-

A shown in Figure 5.30 (a). The flexural capacity is 93.3 kip-in, which results in a DCR 

of 0.21. The capacities, DCRs, and the AISC equations used to calculate the capacities 

for shear and bearing are listed in Table 5.6. PLA is adequate for shear and bearing.  

At the ground anchor rods and the loading rod assemblies, AISC Section J10 for 

“Flanges and Webs with Concentrated Forces” applies to the load transfer channels. For 

single, compressive concentrated loads, the pertinent limit states are web local yielding, 

web crippling, and web sidesway buckling. Table 5.7 lists the demand, capacity, DCR, 

and AISC equation used to calculate the capacity for each limit state.  

Assuming the web of each load transfer channel carries half of the load, the 

demand on the web of each load transfer channel for the limit states is half of the applied 
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factored load: either 13.3 kip at the loading rod assemblies or 17.0 kip at the ground 

anchor rods. The capacity calculations for web local yielding and web crippling used N = 

zero. Web sidesway buckling when the compression flange is not restrained against 

rotation was a concern. This failure mode is shown in Figure 5.31. The web sidesway 

buckling DCRs were much greater than 1.0 when the web was unrestrained, so stiffeners 

were added to prevent web sidesway buckling. With the compression flange restrained by 

stiffeners, the web sidesway buckling DCRs are less than 0.20.  

A pair of stiffeners, shown in Figure 5.32, is located at the locations of the ground 

anchor rods and at the initial position of the loading rod assemblies. In addition to 

preventing web sidesway buckling, the stiffeners at the location of the ground anchor 

rods are required per AISC J10.7 for unframed ends of beams. The stiffeners are 0.25 in 

thick (“long”), 2.25 in wide, extend the depth of the load transfer channel, and are 

fabricated from ASTM A572 grade 50 steel.  

Each stiffener pair is designed to support the factored load of 34.0 kip. They were 

designed as bearing stiffeners following AISC Section J10.8 and Section 11.11 of Salmon 

et al. (2009). The slenderness ratio of the effective cross section shown in Figure 5.32 (a) 

is less than 25, therefore, AISC Equation (J4-6) was used for the limit states of yielding 

and buckling. AISC Equation (J7-1) was used for the limit state of bearing. The demands, 

capacities, and DCRs are summarized in Table 5.6.  

The stiffeners are welded to the load transfer channels. The welds are the 

minimum size fillet weld of 1/8 in per AISC Table J2.4. The flange welds are provided 
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on both sizes of each stiffener and the welds extend the full length of the flanges. The 

web welds are required on only one side of each stiffener and are 7 in long. The demand 

on the flange welds of one stiffener was taken as 17 kip. The web weld was designed to 

carry the difference between the demand on the load transfer channel (17 kip) and the 

capacity of the load transfer channel for web sidesway buckling when the web is not 

restrained (4 kip). The demand on the web weld is 13 kip. The demands, capacities, and 

DCRs are summarized in Table 5.6. 

The load transfer channels are braced at the end by concrete blocks (and wooden 

wedges as needed). Figure 5.33 shows a plan view and Figure 5.34 shows elevation 

views of the bracing (without the wooden wedges). The concrete blocks are 72 in wide, 

24 in long, and 24 in tall (“thick”), and were chosen from available material at ATLSS.  

For torsional bracing requirements of the load transfer channels, the required 

strength of the braces was calculated using AISC Equation (A-6-9). The modification 

factor, Cb, was conservatively taken as 1.0, and the required flexural strength was taken 

as the factored moment of 1355 kip-in. The required bracing strength is 16.3 kip-in. The 

provided strength was calculated as the moment that would cause zero stress at the edge 

of the concrete block due to overturning. The provided strength is 41.8 kip-in, which 

results in a DCR of 0.39.  

Sliding of the concrete blocks was checked by treating the braces as lateral nodal 

braces. The required strength for lateral nodal bracing was calculated using AISC 

Equation (A-6-7) and is 2.4 kip based on the maximum moment in the load transfer 
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channels at Section A. The provided strength was taken as the maximum frictional force 

between the concrete block and the asphalt pavement of the test area. The static 

coefficient of friction was estimated to be 0.6 based on ACI 318-11 (ACI, 2011). The 

normal force was calculated as the estimated weight of the concrete block of 3.5 kip 

using the density for normal weight concrete of 145 lb/ft
3
. The provided strength is 2.1 

kip, which results in a DCR of 1.13. However, because the concrete blocks run 

continuously between the individual loading fixtures at each end, several blocks can be 

mobilized to resist the bracing force. This condition may not be true for the end concrete 

blocks at Section D. Using the maximum moment of the load transfer channels at Section 

D, the required strength for the lateral nodal bracing is 1.9 kip, which results in a DCR of 

0.92.  

The friction between the concrete block braces and the load transfer channels is 

the only restraint on the displacement of the load transfer channels in the parallel plane 

direction. During the tests, displacement in the parallel plane direction should be 

checked. The load transfer channels may displace in this direction if the applied loads 

from the loading rod assemblies do not remain vertical. 

5.7. Loading Beam and Attachments 

The loading rod assemblies pull down on the loading beam, which transfers the 

load to the load bearing assemblies on the test specimen. The loading beam is a W10x49 

fabricated from ASTM A992 grade 50 steel. The loading beam is 13 ft long and the mid-
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length is aligned with the centerline of the test specimen. The loading beam is oriented to 

bend about the weak-axis, so lateral-torsional buckling is not a concern.  

The loading beam was treated as a simply supported beam with two concentrated 

loads at the location of the loading rod assemblies and two reactions at the locations of 

the load bearing assemblies (Figure 5.17 (a)). The beam was analyzed for the forces at 

load steps 35, and in the initial positions of the test specimen and loading rod assemblies. 

The factored load in the loading rod assemblies equals 26.6 kip. The shear and moment 

results at Section A were the largest demands, which were used to design the loading 

beam. The maximum factored shear is 26.6 kip and the maximum factored moment is 

809 kip-in. The deflections of the loading beam were determined at the locations of the 

concentrated loads, which corresponded to the initial position of the loading rod 

assemblies. The initial position is used because θLB would cause negligible changes in the 

parallel distances between the loading rod assemblies and the load bearing assemblies. 

The deflections are given in Table 5.5.  

The flexural capacity of the loading beam was determined using AISC Section F6 

for I-shaped members bent about their minor axis. The shear capacity was calculated 

according to AISC Section G7, which used Equation (G2-1) with the modifications:  

         (5.9) 

        (5.10) 
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Portions of the web of the loading beam are cut out so the load bearing assemblies will 

push up near the top of the loading beam to increase stability (see Section 5.5.1). The 

capacities of the loading beam should not be affected by removing the web because the 

flexural and shear capacity is supplied by the flanges. In Figure 5.2 through Figure 5.5, 

the remaining web is shown by the dashed lines along the length of the loading beam. 

The cuts in the web are at the ends of the loading beam and at the locations of the load 

bearing assemblies. The demands, capacities, DCRs, and AISC equations used to 

calculate the capacities are given in Table 5.7. 

5.8. Loading Rod Assembly 

The forces to load the test specimen are provided by the jacks (Section 5.3), 

located within the loading rod assemblies (Figure 5.12). Figure 5.35 is a plan view of the 

west half of the test setup that shows the spacing between the ground anchor rods, the 

loading rod assemblies, and the centerline of the test specimen. Each loading fixture has 

to loading rod assemblies. In each loading rod assembly, a jack puts the main rod of the 

loading rod assembly into tension. The loading rod assembly transmits this load to the 

load transfer channels and the loading beam through a series of plates, rods, and half-

rounds that make up the loading rod assembly.  

The main rod of loading rod assembly is a 1 in diameter ASTM A193 grade B7 

threaded rod with a nominal yield stress of 105 ksi and a nominal ultimate tensile stress 

of 125 ksi (Figure 5.12). The length is approximately 6.75 ft.  
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The tension demand in the main rod is equal to the factored load in the loading 

rod assembly (26.6 kip). A bending moment in the main rod may develop. The moment 

would be caused by an eccentricity of the force in the main rod due to θLB (see Figure 

5.22). The flexural demand was calculated as an eccentricity multiplied by 26.6 kip. The 

eccentricity was calculated as the radius of the half-rounds multiplied by θLB. The 

eccentricity, which is equal to 0.21 in, is explained later in more detail with the 

discussion of the half-rounds. The flexural demand is 5.5 kip-in. It was assumed that no 

significant shear develops in the main rod and therefore, the moment is constant. 

The capacity for tension of the main rod was calculated using AISC Section J3 

and is 55.2 kip. The flexural capacity was calculated using AISC Section F11 and is 13.3 

kip-in. The tension and flexural demands and capacities were used to evaluate the effect 

of the combined forces in the main rod. The DCR was determined using AISC Section 

H1.1. The required axial tensile strength, Pr, is the axial force (26.6 kip), and the required 

flexural strength, Mr, is the flexural demand (5.5 kip-in). The available axial tensile 

strength, Pc, is the design axial tensile strength (i.e., the factored axial capacity, which is 

equal to 55.2 kip). The available flexural strength, Mc, is the design flexural strength (i.e., 

the factored flexural capacity, which is equal to 13.3 kip-in). Pr divided by Pc is greater 

than 0.2, so Equation (H1-1a) was used to calculate the DCR for the combined forces. 

The DCR is 0.85. The demands, capacities, DCRs, and AISC equations used to calculate 

the capacities are listed in Table 5.6. 

The main rod is put into tension when the jack pushes up against Plate C (PLC), 

which is held down by a nut on the main rod (Figure 5.12). A plan view of PLC is shown 
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in Figure 5.30 (c). A standard 1.0625 in diameter hole for a 1 in diameter bolt, is in the 

center. PLC is 5 in wide, 5 in long, 0.75 in thick, and fabricated from ASTM A572 grade 

50 steel. The width and length are designed to match Plate D (PLD) and Plate F (PLF) for 

simplicity. The thickness was selected so that PLC would remain flat under bending and 

shear.  

Flexure was not a concern for PLC. The shear and bearing demands were taken as 

26.6 kip. The area for the shear capacity was taken as a cylindrical area with a diameter 

equal to the outside diameter of the nut and a length equal to the thickness of the plate. 

The area for the bearing capacity was taken as a ring with an inner diameter equal to the 

diameter of the hole, and an outer diameter equal to the outer diameter of the nut. The 

demands, capacities, DCRs, and AISC equations used to calculate the capacities are 

given in Table 5.6. 

Figure 5.12 shows that the force in the main rod is transferred to the load transfer 

channels by Plate F (PLF). A plan view of PLF is shown in Figure 5.30 (c). PLF is 

fabricated from ASTM A572 grade 50 steel. A standard 1.0625 in diameter hole is in the 

center. The width and length of PLF are 5 in long to match the dimensions of PLC and 

PLD. The thickness is 0.75 in, which is controlled by the flexural demand.  

The demands and capacities of PLF were calculated similarly to the demands and 

capacities of PLA previously explained. The concentrated load for calculating the flexural 

demand was taken as 26.6 kip, which results in a flexural demand of 15.2 kip-in. The 

plastic section modulus used to calculate the flexural capacity was taken at the parallel 
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plane cross section at section A-A in Figure 5.30 (c). The flexural capacity is 24.9 kip-in, 

which results in a DCR of 0.61. The demands, capacities, DCRs, and AISC equations 

used to calculate the capacities for flexure, shear, and bearing are listed in Table 5.6.  

The normal force between PLF and the load transfer channels will result in 

frictional forces on the contact surfaces. The loading rod assemblies are designed 

assuming that they displace freely in the lateral direction in the parallel plane, and large 

frictional forces may prevent this. To decrease the frictional forces, Teflon is placed 

between the load transfer channels and PLF. The static coefficient of friction of Teflon-

on-Teflon is about 0.04 (Serway and Jewett, 2010) compared with 0.3 for steel-on-steel 

(AASHTO, 2005). The smaller static coefficient of friction reduces the maximum 

frictional force that can be developed before sliding occurs. The bottom of the load 

transfer channels is covered with a 10 in length piece of Teflon. The top of PLF is 

covered with Teflon.  

Bearing is a concern for the Teflon because of its low compressive strength. The 

bearing demand on the Teflon is 26.6 kip. The allowable bearing stress on unfilled Teflon 

PTFE is about 3.5 ksi (BPI, 2012). The bearing capacity was calculated as the allowable 

stress of the Teflon multiplied by the bearing area. This results in a capacity of 52.5 kip 

and a DCR of 0.51. 

As the jack pushes up on PLC, it pushes down on Plate D (PLD). PLD distributes 

the load to the top of the load cell (discussed later). A plan view of PLD is shown in 

Figure 5.30 (d). An oversized 1.25 in diameter hole decreases the possibility of the main 
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rod bearing against the side of PLD and affecting the load cell. The width and length of 

PLD are 5 in to extend beyond the 4.5 in outer diameter of the jack (Figure 5.12). The 

thickness of 0.75 in was selected to keep the plate flat. PLD is fabricated from ASTM 

A572 grade 50 steel. The side of PLD that bears on the load cell is to be machined flat.  

Flexure was not a concern for PLD. The shear and bearing demands were taken as 

26.6 kip. The area for the shear capacity was taken as a cylindrical area with a diameter 

equal to the inside diameter of the jack and a length equal to the thickness of the plate. 

The area for the bearing capacity was taken as the horizontal cross sectional area of the 

load cell. The demands, capacities, DCRs, and AISC equations used to calculate the 

capacities are given in Table 5.6. 

A load cell is located under PLD. The details and schematic of a typical load cell 

are shown in Figure 5.36. The load cell measures the applied load. The load cells are 

from equipment available at ATLSS. The load cells are 3.5 in diameter round bar 

fabricated from ASTM A193 grade B7 steel. A 2.5 in diameter hole was drilled through 

the center of the round bar.  

As shown in Figure 5.12, the load cell bears on Plate E (PLE). PLE is supported by 

four small rods and nuts (explained later), one located at each corner, which transfer the 

load to the loading beam. A plan view of PLE is shown in Figure 5.30 (e). The side of 

PLE that the load cell bears on will be machined flat. PLE has an oversized 1.25 in 

diameter hole for the main rod and oversized 0.625 in diameter holes for the small rods. 

PLE is fabricated from ASTM A572 grade 50 steel and is 8.5 in wide and 10 in long to 
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match the dimensions of PLB (discussed later). The thickness is 2 in to provide uniform 

compression on the load cell and prevent significant bending and shear deformations to 

keep the plate flat.  

The flexural and shear capacities of PLE were not calculated because the 2 in 

thickness provides sufficient flexural and shear strength and stiffness. The bearing 

demands on PLE were checked at the location of the load cell (26.6 kip) and at the 

location of the small rods (6.7 kip).  

At the load cell, the area for the bearing capacity was taken as the horizontal cross 

sectional area of the load cell. At the small rods, the area for the bearing capacity was 

taken as a ring with an inner diameter equal to the diameter of the hole and an outer 

diameter equal to the outer diameter of the nut. The bearing capacity is controlled by the 

small rod nuts. The demands, capacities, DCRs, and AISC equations used to calculate the 

capacities are given in Table 5.6.  

The load is transferred from PLE to PLB by the four small rods and nuts (Figure 

5.12). The small rods are 0.5 in diameter ASTM A193 grade B7 threaded rods with a 

nominal yield stress of 105 ksi and a nominal ultimate tensile stress of 125 ksi. Each 

small rod is about 3 ft long. It was assumed that each small rod supports 1/4
th

 of the 

factored load supplied by the jack (6.7 kip) and that no moment is developed in the small 

rods. An eccentricity of the force with respect to the vertical centerlines of the small rods 

would be small compared with the distance between the small rods (spaced 8.375 in apart 

in the parallel plane and 6.875 in apart in the longitudinal plane (see Figure 5.30 (b) and 
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(e))). The tensile capacity was calculated using AISC Equation (J3-1). The capacity of 

each small rod is 13.8 kip, which results in a DCR of 0.48.  

The small rods transfer the load to PLB (Figure 5.12), which bears on the round 

surface of the half-rounds (discussed later). A plan view of PLB is shown in Figure 5.30 

(b). PLB is fabricated from ASTM A572 grade 50 steel and has an oversized 1.25 in 

diameter hole for the main rod and oversized 0.625 in diameter holes for the small rods. 

PLB is 8.5 in wide, which is limited by the clear distance between the flanges of the 

loading beam. The length is 10 in, which is necessary to accommodate the dimensions of 

Plate H (discussed later). The thickness is 1 in and is controlled by the flexural demand. 

When the jacks are reset (explained in Section 4.3.3), a nut on the main rod above PLB 

holds the loading fixture and test specimen in place. 

The flexural demand on PLB was calculated for bending in the parallel plane 

during loading of the test specimen and for bending in the longitudinal plane during the 

resetting of the jacks. The flexural demand in the parallel plane controlled. The flexural 

demand was calculated by treating PLB as a simply supported beam loaded at mid-span 

by a 26.6 kip concentrated load. The length of the beam was taken as the distance 

between the centers of two of the small rods aligned in a parallel plane, 8.375 in. The 

flexural demand was taken as the maximum moment at mid-span of the simply supported 

beam, equal to 55.7 kip-in. The shear and bearing demands on PLB were taken as 26.6 kip 

at the main rod, and 6.7 kip at each small rod. 
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The flexural capacity of PLB calculated using AISC Equation (F11-1) is 81.6 kip-

in. In this calculation, the plastic section modulus was determined for the longitudinal 

plane cross section at section A-A in Figure 5.30 (b). For shear, the location of the main 

rod controlled the capacity using a cylindrical area with a diameter equal to the outer 

diameter of the 1 in nut and a length equal to the thickness of PLB. The bearing capacity 

at the main rod was calculated using a contact area of a ring with an outside diameter 

equal to the outside diameter of the 1 in nut and an inside diameter equal to the diameter 

of the hole. The bearing capacity at the small rods was calculated using a contact area of 

a ring with an outside diameter equal to the outside diameter of the 0.5 in nut and an 

inside diameter equal to the diameter of the hole. A summary of the demands, capacities, 

DCRs, and AISC equations used to calculate the capacities are given in Table 5.6. 

PLB pushes down on two half-round sections that rotate with the loading beam 

(see Figure 5.12 and Figure 5.22). The half-rounds enable the loading rod assembly to 

remain vertical while the loading beam rotates in the parallel plane. The half-rounds are 

half cylinders fabricated from 4 in diameter ASTM A193 grade B7 round bar with a 

nominal yield stress of 95 ksi and a nominal ultimate tensile stress of 115 ksi. Two 3 in 

long half-rounds are under PLB with a space between them for the main rod. The 

longitudinal axis of these half-rounds is in the longitudinal plane.  

The half-rounds will roll along the bottom of PLB as the loading beam rotates in 

the parallel plane. Figure 5.22 shows the initial position and final position of these half-

rounds. The loading beam is not shown for clarity, but the bottoms of the flanges of the 

loading beam are parallel to the top of PLH. The rotation causes the point of contact to be 
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eccentric to the centerline of the main rod, which would induce a moment in the main rod 

as discussed previously. The eccentricity was calculated as the arc length that the half-

round rolls through caused by θLB. The maximum eccentricity is equal to 0.21 in.  

The half-rounds of the loading rod assembly support the load applied by the jack, 

which is less than the largest demand on the half-rounds of the load bearing assemblies. 

Therefore, the total demand on both half-rounds was taken as the factored load of the 

north load bearing assembly (27.2 kip) so the same size half-rounds can be used for both 

locations. Theoretically, the bearing stress on the half-rounds from PLB is infinity 

because it is a flat surface bearing on a circular surface. However, to estimate the 

adequacy of the half-rounds, the bearing capacity was calculated using AISC Section J7 

for a rocker with a diameter less than 25 in. The total capacity of both of the half-rounds 

is 88.6 kip, which results in a DCR of 0.31. 

The loading rod assembly half-rounds bear on a 0.25 in thick neoprene pad as 

shown in Figure 5.12. This material is included to “soften” the contact between the half-

rounds and Plate H. The neoprene is designed to permit a rotation in the longitudinal 

plane between the loading rod assemblies and loading beam. This rotation is discussed in 

Section 4.3.3.  

The neoprene pad bears on Plate H (PLH). PLH transfers the load from the loading 

rod assembly to the loading beam through welds (discussed later) as shown in Figure 

5.37. PLH is fabricated from ASTM A572 grade 50 steel. A plan view of PLH is shown in 

Figure 5.30 (f). Figure 5.38 shows a schematic of the top of the displaced loading rod 
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assembly. The position of the half-round, neoprene pad, and PLH correspond to the 

displacements from the FE analysis for load step 50. The schematic shows the required 

minimum hole radius to prevent the main rod from bearing against PLH. A diameter of 

1.75 in should be sufficient for the extra-large hole. PLH is 12 in wide, which is long 

enough to extend beyond the depth of the loading beam and provide enough length for 

the welds (Figure 5.37). PLH is 6.5 in long to fit between the small rods in the parallel 

plane and not bear against the small rods when it rotates. PLH is 1 in thick, which was 

controlled by the flexural demand.  

The flexural demand on PLH was determined by treating the plate as a simply 

supported beam in the longitudinal plane with two uniformly distributed loads at the 

locations of the half-rounds and neoprene pads as shown in Figure 5.39. In this figure, d 

is the depth of the loading beam (10 in), LHR is the length of the half-round (3 in), ⌀H is 

the diameter of the hole (1.75 in), and ωHR is the distributed patch load applied by the 

half-rounds and neoprene pads. ωHR was calculated as follows: 

     (
  
 
) (

 

   
) (5.11) 

Where Pu is equal to 26.6 kip (the factored load applied by the loading rod assembly). 

The flexural demand was taken as the maximum moment at mid-span (see Figure 5.39), 

equal to 34.9 kip-in. The shear demand was taken as Pu/2. The bearing demand was taken 

as Pu. The flexural capacity was calculated with a plastic section modulus for the parallel 

plane cross section at section A-A in Figure 5.30 (f). The bearing capacity was calculated 
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using the area under the neoprene pads. The demands, capacities, DCRs, and AISC 

equations used to calculate the capacities are listed in Table 5.6. 

PLH is attached to the loading beam with 4 in long 1/4 in fillet welds, the 

minimum size weld required per AISC Table J2.4 (see Figure 5.37). The welds are on the 

outside of the flanges in the parallel plane. The demand on each weld is Pu/2 (13.3 kip; 

see Figure 5.39). The capacity of each weld was calculated using Equation (J2-3) and is 

equal to 22.3 kip. The DCR is 0.60. 

5.9. Load Bearing Assemblies 

The load bearing assemblies transmit the load from the loading beam to the test 

specimen. Full longitudinal plane cross section views of the load bearing assemblies at 

Section A, at Section B, and at Sections C and D are shown in Figure 5.13, Figure 5.14, 

and Figure 5.15, respectively. Figure 5.13 corresponds to section B-B of Figure 5.1, and 

Figure 5.14 and Figure 5.15 correspond to section C-C of Figure 5.1. Detailed 

longitudinal plane cross section views of the load bearing assemblies are given in Figure 

5.9 at Section A (corresponding to Detail A in Figure 5.2), in Figure 5.10 at Section B 

(corresponding to Detail B in Figure 5.3), and in Figure 5.11 at Sections C and D 

(corresponding to Detail C in Figure 5.4 for Section C and corresponding to Detail D in 

Figure 5.5 for Section D). Figure 5.40 is a plan view of the west half of the test setup that 

shows the spacing of the load bearing assemblies, the loading rod assemblies, and the 

centerline of the test specimen. The load bearing assemblies at Section A are represented 

by an asterisk.  



www.manaraa.com

168 

 

At each load bearing assembly (see Figure 5.6 through Figure 5.11), the load is 

transferred from the loading beam to one or two plates. These plates bear on a half-round. 

Below the half-round is a square bar and an HSS. A cap plate is between the half-round 

and the bar, and another cap plate is between the bar and the HSS. The HSS bears on a 

plate on top of the tube of the TFG (Plate G) or on top of the mid-span diaphragm (Plate 

K).  

The load is transferred to the load bearing assembly through Plate J (PLJ). As 

shown in Figure 5.9, Figure 5.10, and Figure 5.11, PLJ is welded to the top of the flanges 

of the loading beam. Section A and Section B have one PLJ, and Section C and Section D 

have two PLJs spaced 4 in apart on center. PLJ is a 2 in square bar fabricated from ASTM 

A572 grade 50 steel. It is cut to fit between the flanges of the loading beam. The 

dimensions were controlled by the flexural demands and welding requirements.  

The flexural demand and shear demand on PLJ at Section A and at Section B 

(Figure 5.9 and Figure 5.10) controlled its design. The demands were calculated by 

treating PLJ as a simply supported beam with a uniformly distributed line load where PLJ 

bears on the half-round. The capacities were determined using AISC Section F11 and 

Section J4 for flexure and shear, respectively. A summary of the demands, capacities, 

DCRs, and AISC equations used to calculate the capacities are given in Table 5.6. 

As shown in Figure 5.9, Figure 5.10, and Figure 5.11, the top and bottom edges of 

each end of PLJ are welded to the flanges of the loading beam. Each weld is a 1.375 in 

long 5/16 in fillet weld. The demand at each end of PLJ is 13.6 kip at Section A and at 
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Section B (the locations with the largest demand). The strength of the weld, rather than 

the base metal, determined the capacity of the welds. This was calculated using AISC 

Equation (J2-3). The capacity of the welds at each end of PLJ is 19.1 kip, which results in 

a DCR of 0.71.   

At Section C and at Section D (Figure 5.8 and Figure 5.11), Plate I (PLI) is 

between the two PLJs and the half-round. PLI transmits the load from the half-round to 

two PLJs. PLI is fabricated from ASTM A572 grade 50 steel, and is 2.5 in wide, 6 in 

long, and 0.75 in thick.  

The flexural demand on PLI was taken as the maximum moment calculated by 

treating PLI as a 6 in long simply supported beam with a uniformly distributed load along 

the span. The shear demand was taken as half of the factored load applied at the load 

bearing assembly (27.2 kip). The flexural and shear capacities were determined from 

AISC Section F11 and Section J4, respectively. The demands, capacities, DCRs, and 

AISC equations used to calculate the capacities are listed in Table 5.6. 

As shown in Figure 5.11, PLI is welded to each PLJ with 1 in long 1/4 in fillet 

welds. Since PLI bears against PLJ, these welds are only needed to keep the plates 

together. Therefore, the minimum weld size and the minimum weld length specified by 

AISC Section J2 are used.  

PLI at Section C and at Section D (Figure 5.11), and PLJ at Section A and at 

Section B (Figure 5.6 and Figure 5.7), bear on a half-round designed to enable the test 

specimen to respond independently from the loading fixture. The 6 in long half-rounds 
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are fabricated from 4 in diameter ASTM A193 grade B7 round bar with a nominal yield 

stress of 95 ksi and a nominal ultimate tensile stress of 115 ksi. At Section A and at 

Section B (Figure 5.9 and Figure 5.10), the half-round longitudinal axis is in the 

longitudinal plane because θrel is larger than the rotation about the parallel axis (in the 

longitudinal plane) of the test specimen (see Section 4.3.3). At Section C and at Section 

D (Figure 5.8), the half-round longitudinal axis is in the parallel plane because the 

rotation of the test specimen in the longitudinal plane is larger than θrel. The analysis for 

this half-round was the same as the analysis for the half-rounds at the loading rod 

assemblies explained in Section 5.8. 

The half-round in the load bearing assembly bears on a cap plate (Figure 5.6, 

Figure 5.7, and Figure 5.11). A second cap plate is located under the 1 in square bar 

(between the two cap plates). The cap plates are designed to distribute the load to the bar 

and the HSS. The cap plates are fabricated from ASTM A572 grade 50 steel. They are 7 

in wide and 7 in long to extend beyond the 6 in width of the HSS walls. They are 0.75 in 

thick, which was controlled by flexure in the bottom cap plate.  

The flexural demand in the bottom cap plate (Figure 5.9) was taken as the 

maximum bending stress, σmax, at the center of the plate. The bottom cap plate was 

analyzed as a 6 in by 6 in rectangular plate (equal to the width and length of the HSS) 

with simply supported edges and a uniform patch load applied over a central rectangular 

area (1 in by 6 in) equal to the square bar bearing on the bottom cap plate. σmax is 

calculated as follows (Young and Budynas, 2002): 
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 (5.12) 

Where, 

β is a parameter based on the dimensions of the plate and the dimensions 

of the rectangular patch load. Using Section 11.14 of Young and Budynas 

(2002) and linear interpolation, β is equal to 0.65. 

W is the total applied load on the patch, which is equal to the factored load 

on the load bearing assembly (27.2 kip). 

t is the thickness of the plate, 0.75 in.  

σmax in the bottom cap plate is 31.5 ksi. The factored flexural capacity of the cap plate 

was calculated as the nominal yield stress of the plate, 50 ksi, multiplied by the resistance 

factor for flexure, ϕb = 0.9, from AISC Section F1. The factored flexural capacity is 45 

ksi, which results in a DCR of 0.70. The demands, capacities, DCRs, and AISC equations 

used to calculate the capacities for flexure, shear, and bearing are given in Table 5.6. 

To prevent movement of the half-round, the top cap plate is welded to the half-

round along two edges as shown in Figure 5.9 at Section A, in Figure 5.10 at Section B, 

and in Figure 5.8 at Sections C and D. Each 1/4 in fillet weld is 2.5 in long. The bottom 

cap plate is welded to the south and north walls of the HSS with a 2.5 in long 1/4 in fillet 

weld (Figure 5.6, Figure 5.7, and Figure 5.8). 
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The top cap plate bears on a 1 in square bar fabricated from ASTM A572 grade 

50 steel (Figure 5.8, Figure 5.10, and Figure 5.9). The bar is designed to act as a 

rotational kinematic release. The longitudinal axis of the bar is perpendicular to the 

longitudinal axis of the half-round. The bar is 6 in long.  

Bearing is the only concern for the square bar. The bearing demand is 27.2 kip. 

The bearing capacity was calculated using AISC Equation (J7-1). The bearing area was 

taken as the area equal to the width of the bar multiplied by the diameter of the half-

round. The bearing capacity is 270 kip. The bearing DCR is 0.10.  

To stabilize the square bar and cap plates during assembly of the loading fixture, 

crushable foam is used on both sides of the bar between the cap plates as shown in Figure 

5.9, Figure 5.10, and Figure 5.8 at Section A, at Section B, and at Sections C and D, 

respectively. It is assumed that the foam does not carry any of the load. The foam is 

expected to crush to allow rotations in the plane perpendicular to the longitudinal axis of 

the bar. The foam can be replaced if needed. 

The bottom cap plate under the square bar bears on an HSS (Figure 5.6 through 

Figure 5.11). The HSS is used to fill the distance between the bottom cap plate and the 

bearing plate (Plate G or Plate K) that loads the test specimen. The section is an 

HSS6x6x1/4 fabricated from ASTM A500 grade C steel. The length of the HSS is 14.75 

in at Section A and 6.25 in at Section B, at Section C, and at Section D. The lengths are 

designed to allow a clear distance of 1.5 in between the TFGs and the bottom flange of 

the loading beam at Section A (Figure 5.6), and a clear distance of 1.5 in between the 
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bearing plate (Plate G) on the TFG and the bottom flange of the loading beam at Section 

B, Section C, and Section D (Figure 5.7, Figure 5.8, Figure 5.10, and Figure 5.11). 

The north HSS at Section A and the north HSS at Section B were used to check 

the adequacy of the HSS because they have the largest rotations at load step 50 of the FE 

analysis (Section 4.3). The HSS were checked for combined flexure and axial force. The 

axial force was taken as 27.2 kip. The flexural demand was calculated as 27.2 kip 

multiplied by the eccentricity, e, between the centerline of the base of the HSS and the 

line of action of the vertical force acting on the half-round (shown in Figure 5.23 (b) and 

(c) for the HSS at Section A). The eccentricity was taken as Hi multiplied by tan(θTFG), 

where θTFG was taken from G2 and is the rotation of the tube in the parallel plane. The 

eccentricity at Section A is equal to 1.89 in and the eccentricity at Section B is equal to 

0.51 in.  

The adequacy of the HSS was determined using AISC Section H1.1. The required 

axial compressive strength, Pr, is the axial force (27.2kip), and the required flexural 

strength, Mr, is the flexural demand. Mr is equal to Pr multiplied by the eccentricity of Pr. 

Mr is 51.5 kip-in at Section A and 48.6 kip-in at Section B. The available axial 

compressive strength, Pc, is the design axial compressive strength (i.e., the factored axial 

capacity). Pc was calculated using AISC Equation (J4-6) (because KL/r of the HSS is less 

than 25) and is 236 kip. The available flexural strength, Mc, is the design flexural strength 

(i.e., the factored flexural capacity). Mc was calculated using AISC Equation (F7-1) and 

is 504 kip-in. For both HSS, Pr divided by Pc is less than 0.2, so Equation (H1-1b) was 

used to calculate the DCR of each HSS. The DCR of the HSS at Section A is 0.16 and the 
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DCR of the HSS at Section B is 0.15. The demands, capacities, DCRs, and AISC 

equations used to calculate the capacities are listed in Table 5.7. 

The HSS and the bottom cap plate connection design was evaluated using AISC 

Section K1.1 for a concentrated axial force on the end of a rectangular HSS. The applied 

axial force is 27.2 kip. The two limit states of wall local yielding and wall local crippling 

are considered. The wall local yielding capacity was determined using Equation (K1-11) 

and the wall local crippling capacity was determined using Equation (K1-12). The 

demands, capacities, DCRs, and AISC equations used to calculate the capacities are listed 

in Table 5.7.  

The top of the HSS is welded to the bottom cap plate as previously explained. As 

can be seen in Figure 5.6 at Section A, Figure 5.7 at Section B, and Figure 5.8 at Sections 

C and D, the base of the HSS is welded to a bearing plate with 2.5 in long 1/4 in fillet 

welds.  

The bearing plates under the HSS are Plate G (PLG) on top of the TFG tube at 

Section B, at Section C, and at Section D (Figure 5.7, Figure 5.8, Figure 5.10 and Figure 

5.11), and Plate K (PLK) on the top of the mid-span diaphragm at Section A (Figure 5.6 

and Figure 5.9). Both plates are fabricated from ASTM A572 grade 50 steel. 

PLG is 12 in wide, 12 in long, and 1 in thick. The width was chosen to achieve the 

patch loading described in Section 4.2.3. The length was chosen to match the horizontal 

width of the tube. The thickness was selected to be stiff enough to distribute the load to 
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the TFG. PLG is not attached to the tube of the TFG to avoid affecting the capacity of the 

tube. 

PLK is 8 in wide, 7 in long, and 0.75 in thick. As shown in Figure 5.9, the width 

extends beyond the edges of the flange of the mid-span diaphragm for welding. As shown 

in Figure 5.6, the length is short enough to avoid contact with the stiffener of the TFG, 

while the centerline of the load bearing assembly is 3 in away from the edge of the 

diaphragm. The length is long enough to extend beyond the walls of the HSS for welding. 

The thickness matches the cap plates. PLK is welded to the edges of the flange of the 

diaphragm in the parallel plane with 2.5 in long 1/4 in fillet welds. 

Bearing of the HSS on PLG and PLK is the only design consideration. The analysis 

used the maximum compressive force on the north wall of the HSS at Section B for PLG 

and at Section A for PLK. The maximum compressive force was determined from the 

stress analysis explained in Section 5.5.3 (Figure 5.23). The demands, capacities, DCRs, 

and AISC equations used to calculate the capacities are given in Table 5.6. 

The space between the bearing plates (PLG and PLK) and the tops of the tubes 

(where PLG is located) and the mid-span diaphragm (where PLK is located) may need to 

be grouted or shimmed to create good contact conditions.  

5.10. Diaphragm to TFG Connection Evaluation 

The total load on the test specimen produces load effects in the connections 

between the diaphragms and the TFGs. The load effects are caused by the interaction 
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between the diaphragms and the TFGs. At Section A, there are additional load effects in 

the connections because the loads are applied to the diaphragm.  

The loading fixture is designed for the maximum load of the test specimen. 

Initially, however, the connection between the diaphragm and the TFG was not designed 

for the loads applied to the diaphragm. The connection was designed for the scaled load 

effects from the full-scale two-TFG bridge under Strength I limit state loads (AASHTO, 

2005) (the scaling process is explained in Section 3.3). Therefore, in the present study, 

the connection was evaluated for the maximum applied load. The connection between the 

diaphragm and G2 at Section A was evaluated because it has the largest load effects. 

Figure 5.41 shows a fixed-ended beam model for the diaphragm, with two applied 

concentrated loads, RG1 and RG2. This model was used to determine the additional shear, 

Vadd, and additional moment, Madd, demand on the connection. Figure 5.41 shows the 

corresponding shear and moment diagrams. The length of the fixed-ended beam equals 

the length of the beam element used to model the diaphragm with the connection plates in 

the FE model (Section 4.3). RG1 and RG2 are applied at the locations of the centerline of 

the south load bearing assembly and the centerline of the north load bearing assembly, 

respectively. RG1 and RG2 were taken as the unfactored applied loads when the total 

applied load on the TFG test specimen equals the maximum load capacity. RG1 and RG2 

have a load ratio of 1.05 (explained in Section 5.3). The shear, VG1 and VG2, and moment, 

MG1 and MG2, reactions were used to determine the additional load effects on the 

connections.  
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Figure 5.42 shows the shear and moment diagrams for the load effects at Section 

A from interaction between the diaphragm and the TFGs. The load effects are taken when 

the total applied load on the test specimen equals the maximum load capacity, and are 

unfactored. The shear, Vint, and moment, Mint, from the diaphragm-TFG interaction were 

obtained from the FE analysis at the ends of the beam elements at Section A (Point E in 

Figure 5.41 represents the north end of the beam elements).  

The total shear, Vtotal, and the total moment, Mtotal, were used to evaluate the 

connection between the diaphragm and the TFG, and were calculated as follows: 

                  (5.13) 

                  (5.14) 

As explained in Section 3.7, the connections consist of bolted connection plates used to 

attach the diaphragms to the TFG stiffeners. The welds between the TFG and the 

stiffener, and the bolted connections were evaluated.  

5.10.1. Weld Design Evaluation 

The existing welds (shown in Figure 5.43) were measured and used to determine 

the capacity of the welds between the stiffener and the TFG. The capacity based on the 

actual dimensions of the welds was compared to the expected demand at the time of the 

maximum applied load. Figure 5.43 is a schematic of the existing welds of the transverse 

stiffener at Section A to G2 (the connection with the largest demand). The existing welds 
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on both sides of the stiffener are typically 5/16 in fillet welds. However, the bottom welds 

contain locations where the weld is only 1/4 in.  

Figure 5.44 is a schematic of the welds with the load effects, Vtotal and Mtotal, and 

the location of the center of gravity. Point E in Figure 5.44 is at the same location on the 

test specimen as Point E shown in Figure 5.41. The demand on the welds was calculated 

using the elastic (vector) method, for which the results are expected to be conservative. 

The unfactored moment, Mweld, acting on the weld configuration was calculated as 

follows: 

                       (5.15) 

Where ew is the eccentricity of Vtotal from Point E to the center of gravity of the welds 

(see Figure 5.44). In all of the loading fixture design calculations, the load factor for the 

applied load (FS) is 1.3. The factored shear, Vu, therefore, was calculated as Vtotal 

multiplied by 1.3. The factored moment, Muweld, equals Mweld multiplied by 1.3. Muweld 

and Vu were divided by two and then used to find the resultant demand, Ru, on the welds 

on one side of the stiffener. Ru is largest at Point A in Figure 5.44, but the demand at 

Point B, at Point C, and at Point D were also evaluated. Ru at Point A is 8.76 kip/in; the 

other Ru values are given in Table 5.8.  

The capacity of the configuration of the welds was calculated with AASHTO 

Equation (6.13.3.2.4b-1) for fillet welds in shear (AASHTO, 2005). The resistance factor, 
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ϕe2, equals 0.80 and the strength of the weld metal, Fexx, was taken as 70 ksi. The design 

capacity, Rr, of each existing weld configuration is 7.42 kip/in.  

The DCR for Point A of the welds is 1.18, which indicates that the welds may be 

overloaded at Point A when the maximum applied load is reached. The DCRs for the 

other points are given in Table 5.8: Point B also has a DCR greater than 1.0, but Point C 

and Point D have DCRs less than 1.0.  

The DCRs for these welds were accepted. Although the welds may start to yield 

at Point A and at Point B under the maximum applied load multiplied by 1.3, the other 

parts of the welds are able to carry additional load. These parts would also have to yield 

before the entire weld configuration fails.  

In addition, the method for calculating the additional load effects on the welds are 

conservative. The analysis treated the diaphragms as a fixed-ended beam. If yielding 

occurs at the ends, the moment diagram of Figure 5.41 would change and the mid-span 

moment would increase, and the end moment would be limited by the weld yield 

moment.  

The DCRs for the welds are computed with a 1.3 FS. To get another estimate of 

the possibility of overloading the welds as the test specimen reaches the maximum load 

capacity, the “actual” FS values were computed by dividing the factored capacity by the 

unfactored load effects. For Point A, the actual FS is 1.10, and for Point B, the actual FS 

is 1.14, which indicates that the welds should not yield when the applied load reaches the 

expected maximum load capacity of the test specimen. 
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5.10.2. Bolt Design Evaluation  

The bolts and bolt holes of the connection between the diaphragm and the TFG 

were evaluated for the load effects when the applied load reaches the maximum load 

capacity of the test specimen. The connection plate with the bolts is shown in Figure 

5.45. The bolt spacing and dimensions of the connection plate are given. The bolt group 

(the two rows of bolts to the right) consists of two rows of seven 0.75 in diameter ASTM 

A325 bolts that attach two connection plates to the TFG stiffener. The width of the 

connection was taken as the distance from the south edge of the stiffener to the north 

edge of the connection plates, which is the overlap between the connection plates and the 

stiffener. 

Figure 5.45 shows the load effects on the right bolt group. Point E in Figure 5.45 

is the same point on the test specimen as Point E in Figure 5.41 and Point E in Figure 

5.44. Figure 5.46 is a schematic of the vertical and horizontal components of the demand 

on the bolts and bolt holes with the largest demands. An elastic (vector) analysis was 

used to find the demands. Bolt B1 and bolt hole BH1 have the largest demand, however, 

bolt B2 and bolt hole BH2 were also examined. The unfactored shear, Vtotal, and the 

factored shear, Vu, were the same as in the weld evaluation. The unfactored moment, 

Mbolt, acting on the bolt group was calculated as follows: 

                       (5.16) 
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Where eb is the eccentricity of Vtotal from Point E to the center of gravity of the bolt group 

(see Figure 5.45). The factored moment, Mubolt, equals Mbolt multiplied by 1.3. The 

demands, Ru, on the bolts and bolt holes are given in Table 5.9. 

The bolt capacities were evaluated for shear and slip resistance. The shear 

resistance of a single bolt was calculated using AASHTO Equation (6.13.2.7-2), which 

assumes that the threads of the bolt are included in the shear plane (2005). The slip 

resistance of a single bolt was calculated using AASHTO Equation (6.13.2.8-1) with a 

hole size factor for a standard hole, and a surface condition factor for a Class A surface. 

The factored capacities, Rr, of the bolts are given in Table 5.9. 

The bolt hole capacity was evaluated for bearing resistance. The bearing 

resistance at a bolt hole was calculated using AASHTO Equation (6.13.2.9-2) because the 

clear end distance from the bolt hole to the edge of the material the bolt is connected to is 

less than two times the diameter of the bolt. The vertical and horizontal clear end 

distances are different, so both directions were checked. For the horizontal direction, the 

clear end distance is the same for the stiffener and the connection plates. Therefore, the 

bolt hole capacity in the horizontal direction is controlled by the 0.75 in thickness of the 

stiffener, which is less than twice the thickness of 0.5 in of each connection plate. For the 

vertical direction, the clear end distance is different for the stiffener and the connection 

plates because the stiffener extends beyond the edges of the connection plate. Therefore, 

the bolt hole capacity in the vertical direction is controlled by the connection plates. The 

factored capacities, Rr, of the bolt holes are given in Table 5.9.  
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The DCRs for the bolts and bolt holes are listed in Table 5.9. The DCRs for the 

slip of B1, shear of B1, and horizontal bearing at BH1 are larger than 1.0. Slip is not a 

major concern when the test specimen is at the maximum load. The shear of B1 and the 

bearing at BH1 are more critical. The DCRs for B2 and BH2 are less than 1.0 indicating 

that they are able to carry additional load. As the bolts and bolt holes begin to yield, the 

forces will be redistributed to the other bolts and bolt holes.  

The yielding at the bolt holes in addition to the yielding in the bolts will cause the 

connection to deform, and as explained for the stiffener to TFG weld configuration, the 

analysis methods used for the bolt connection evaluation are conservative; deformation at 

the connection will redistribute the moment within the diaphragm. It was decided that the 

DCRs for B1 and BH1 are acceptable. 

Similar to the weld analysis, the “actual” FS values were calculated for the shear 

resistance of the bolts and the bearing resistance of the bolt holes. The actual FS for the 

shear resistance of B1 is 0.90. However, the actual FS for the shear resistance of B2 is 

1.31, so B2 will be able to carry additional load. The actual FS for the bearing resistance 

of BH1 and BH2 is 1.01 and 1.52, respectively.  

5.10.3. Connection Plate and TFG Stiffener Design Evaluations  

The connection plates and the stiffener between the diaphragm and the TFGs, 

shown in Figure 3.17, were evaluated for the load effects when the test specimen reaches 

the maximum applied load. The demands on the connection plates and stiffener were 

taken as the factored shear from the bolt design evaluation and the factored moment from 



www.manaraa.com

183 

 

the bolt design evaluation. The demands, Ru, for the connection plate (CP) and stiffener 

(S) are given in Table 5.10.  

The factored capacities of the connection plates and stiffener were calculated for 

block shear rupture, shear, and flexure. The block shear rupture capacity of the 

connection plates was calculated with AASHTO Equation (6.13.4-1) (2005). The block 

shear rupture of the stiffener was considered, but a block shear mechanism was not 

identified. The shear capacity of the connection plates and the stiffener was taken as the 

minimum of the shear yielding resistance calculated using AASHTO Equation (6.13.5.3-

1), and the shear rupture resistance calculated using AASHTO Equation (6.13.5.3-2). The 

flexural capacity in the connection plates and the stiffener was based on the AASHTO 

LRFD Specification for a bolted splice plate in flexure. According to AASHTO Section 

6.13.6.1.4, the gross section properties should be used to calculate the flexural stresses. 

The capacities, Rr, of the connection plates (CP) and stiffener (S) are listed in Table 5.10.  

The DCRs for the connection plates and stiffener are given in Table 5.10. The 

DCR  values are low, so the connection plates and the stiffener should be adequate to 

support the expected load capacity of the test specimen.  
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Table 5.1: Dimensions of plates and bars of loading fixture 

Part Width (in) Length (in) Thickness (in) 

PLA  8 5 1.5 

PLB  8.5 10 1 

PLC  5 5 0.75 

PLD  5 5 0.75 

PLE  8.5 10 2 

PLF  5 5 0.75 

PLG  12 12 1 

PLH  12 6.5 1 

PLI  2.5 6 0.75 

PLJ  8.88 1.75 1.75 

PLK  8 7 0.75 

1" Bar 1 6 1 

Cap Plate 7 7 0.75 

South End Tie Plate 4.5 4.5 0.25 

Intermediate Tie Plate 4.5 2.75 0.25 

North End Tie Plate 2 5 12 

Stiffener 2.25 0.25 12 
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Table 5.2: Lengths of steel shapes of loading fixture 

Part Length (in) 

HSS – Section A 14.75 

HSS – Sections B, C, D  6.25 

C12x20.7 240 

W10x49 156 

Loading Rod Assembly 4 in 

Diameter Half-Round 
3 

Load Bearing Assembly 4 in 

Diameter Half-Round 
6 

 

Table 5.3: Maximum moments for load transfer channels and loading beam 

Section Member 

Nominal 

Maximum 

Moment (kip-ft) 

Factored 

Maximum 

Moment (kip-ft) 

Factored 

Maximum 

Moment (kip-in) 

A 
LTC 86.9 112.9 1355 

LB 51.8 67.4 809 

B 
LTC 84.6 110.0 1320 

LB 35.8 46.5 558 

C 
LTC 82.1 106.8 1281 

LB 35.8 46.5 558 

D 
LTC 70.4 91.6 1099 

LB 35.8 46.5 558 

LTC = Load transfer channels of the loading fixture 

LB = Loading beam of the loading fixture  
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Table 5.4: Ground anchor rod reactions and DCR 

Section Position 

Nominal 

Reaction  

(kip) 

Factored 

Reaction  

(kip) 

Design 

Load 

(kip) 

DCR 

A 
South 14.8 19.2 112.5 0.17 

North 26.1 34.0 112.5 0.30 

B 
South 15.0 19.5 112.5 0.17 

North 25.9 33.6 112.5 0.30 

C 
South 23.9 31.1 112.5 0.28 

North 17.0 22.0 112.5 0.20 

D 
South 19.9 25.8 112.5 0.23 

North 21.0 27.3 112.5 0.24 

 

Table 5.5: Elastic deflection of built-up load transfer channels and loading beam at 

loading rod assemblies 

 
Built-Up Load Transfer Channels (in) Loading Beam (in) 

 
Step 35  

(Maximum Load) 

Step 50  

(Beyond Maximum Load) 
All Steps 

Section South North South North South North 

A 0.66 0.13 0.66 0.11 0.48 0.53 

B 0.64 0.15 0.63 0.10 0.26 0.31 

C 0.60 0.26 0.61 0.24 0.26 0.31 

D 0.47 0.43 0.48 0.42 0.26 0.31 
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Table 5.6: DCRs for loading fixture components 

Part Limit State Unit Demand Capacity DCR 
AISC 

(Eq.) 

PLA  

Flexure kip-in 19.4 93.3 0.21 F11-1 

Shear kip 17 161.8 0.11 G2-1 

Bearing kip 34 1985 0.02 J7-1 

PLB  

Flexure kip-in 55.7 81.6 0.68 F11-1 

Shear kip 26.6 137.8 0.19 J4-4 

Bearing kip 26.6 36.4 0.73 J7-1 

PLC  
Shear kip 26.6 103.4 0.26 J4-4 

Bearing kip 26.6 59.4 0.45 J7-1 

PLD  
Shear kip 26.6 90.3 0.29 J4-4 

Bearing kip 26.6 207 0.13 J7-1 

PLE Bearing kip 6.65 9.1 0.73 J7-1 

PLF  

Flexure ksi 15.2 24.9 0.61 F11-1 

Shear kip 26.6 86.4 0.31 J4-4 

Bearing kip 26.6 59 0.45 J7-1 

PLG  Bearing kip 10.3 94.4 0.11 J7-1 

PLH  

Flexure kip-in 34.9 53.4 0.65 F11-1 

Shear kip 13.3 138.9 0.10 J4-4 

Bearing kip 26.6 1620 0.02 J7-1 

PLH to LB 

Weld 
Shear Kip 13.3 22.3 0.60 J2-3 

PLI  

Flexure kip-in 6.8 15.8 0.43 F11-1 

Shear kip 13.6 56.3 0.24 J4-3 

Bearing kip 13.6 295 0.05 J7-1 

LB = Loading beam of loading fixture  
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Table 5.6 (cont’d): DCRs for loading fixture components 

Part Limit State Unit Demand Capacity DCR 
AISC 

(Eq.) 

PLJ 

Sections A & B 

Flexure kip-in 40.0 90 0.44 F11-1 

Shear kip 13.6 120 0.11 J4-3 

PLJ  

Sections A & B 

Weld 

Shear kip 13.6 19.1 0.71 J2-3 

PLJ  

Sections C & D 

Weld 

Shear kip 6.8 19.1 0.36 J2-3 

PLJ  

Sections C & D 

Flexure kip-in 25.9 90 0.29 F11-1 

Shear kip 6.8 120 0.06 J4-3 

PLK  Bearing kip 10.6 94.4 0.11 J7-1 

PLK to  

HSS Weld 
Shear kip 27.2 27.8 0.98 J2-3 

PLK to  

Diaphragm 

Weld 

Shear kip 27.2 27.8 0.98 J2-3 

1" Bar Bearing kip 27.2 270 0.10 J7-1 

Cap Plate 

Flexure ksi 31.5 45.0 0.70 - 

Shear kip 27.2 540 0.05 J4-3 

Bearing kip 27.2 405 0.07 J7-1 

Cap Plate to 

Half-Round 

Weld 

Shear kip 27.2 27.8 0.98 J2-3 

Cap Plate to 

HSS Weld 
Shear kip 27.2 27.8 0.98 J2-3 
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Table 5.6 (cont’d): DCRs for loading fixture components 

Part Limit State Unit Demand Capacity DCR 
AISC 

(Eq.) 

LTC - South End 

& Intermediate 

Tie Plate 

Shear kip 7.7 33.8 0.23 G2-1 

LTC - South End 

Tie Plate Weld 
Shear kip 7.7 36.2 0.21 J2-3 

LTC - 

Intermediate 

Tie Plate Weld 

Shear kip 7.7 19.5 0.39 J2-3 

LTC - North End 

Tie Plate 
Shear kip 7.7 720 0.01 G2-1 

LTC - North End 

Tie Plate Bolts 

Slip-Critical 

Connection 
kip 7.7 9.4 0.82 J3-4 

LTC - Bearing 

Stiffeners 

Strength  kip 34.0 355 0.10 J4-6 

Bearing kip 34.0 76 0.45 J7-1 

LTC - Stiffener 

to Flange Weld 
Shear kip 17.0 22.3 0.76 J2-3 

LTC - Stiffener 

to Web Weld 
Shear kip 13.0 19.5 0.67 J2-3 

Teflon Bearing kip 26.6 52.5 0.51 -  

Main Rod 

Tension kip 26.6 55.2 0.48 J3-1 

Flexure kip-in 5.5 13.3 0.41 F11-1 

Tension & Flexure - - - 0.85 H1-1a 

Small Rod Tension kip 6.7 13.8 0.48 J3-1 

Half-Rounds Bearing kip 27.2 88.6 0.31 J7-2 

Concrete Block 

Bracing of LTC 

Strength 

Torsional Bracing 
kip-in 16.3 41.8 0.39 A-6-9 

Strength 

Lateral 

Nodal 

Bracing 

Section A 

kip 

2.4 2.1 1.13 

A-6-7 

Section D 2.4 1.9 0.92 

LTC = Load transfer channel of loading fixture  
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Table 5.7: DCRs for loading fixture steel sections 

Steel 

Section 
Limit State Unit Location Demand Capacity DCR 

AISC 

(Eq.) 

Single 

Load 

Transfer 

Channel 

Web Local 

Yielding  

(interior load) 

kip MR 13.3 79.3 0.17 J10-2 

Web Local 

Yielding  

(exterior load) 

kip GAR 17.0 39.7 0.43 J10-3 

Web Crippling kip 
MR & 

GAR 
17.0 76.6 0.22 J10-4 

Web Sidesway 

Buckling  

(not restrained) 

kip GAR 17.0 4.0 4.23 
J10-7 

kip MR 13.3 4.0 3.31 

Web Sidesway 

Buckling  

(restrained) 

kip GAR 17.0 100.5 0.17 
J10-6 

kip MR 13.3 100.5 0.13 

Built-Up 

Load 

Transfer 

Channels 

Flexure kip-in MR 1355 1498 0.90 - 

Shear kip GAR 34 203 0.17 G2-1 

Loading 

Beam 

Flexure kip-in G2 809 1274 0.64 F6-1 

Shear kip MR 26.6 168 0.16 G2-1 

HSS 

Section 

A 

Wall Local 

Yielding 
kip G2 27.2 110.4 0.25 K1-11 

Wall Local 

Crippling 
kip G2 27.2 164.4 0.17 K1-12 

Compression kip G2 27.2 236 0.12 J4-6 

Flexure kip-in G2 51.5 504 0.10 F7-1 

Compression & 

Flexure 
- - - - 0.16 H1-1b 

HSS 

Section 

B 

Compression kip G2 27.2 236 0.12 J4-6 

Flexure kip-in G2 48.6 504 0.10 F7-1 

Compression & 

Flexure 
- - - - 0.15 H1-1b 

GAR = Ground anchor rod  MR = Main rod of the loading rod assembly 
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Table 5.8: Stiffener to G2 weld connection check 

Weld  

Point 

Ru  

(kip/in) 

Rr  

(kip/in) 
DCR 

A 8.76 7.42 1.18 

B 8.49 7.42 1.14 

C 6.74 7.42 0.91 

D 6.22 7.42 0.84 

 

 

Table 5.9: Diaphragm to TFG bolt check 

Limit State Part Unit Ru  Rr  DCR 

Shear 
B1 kip 46.3 32.2 1.44 

B2 kip 32.0 32.2 0.99 

Slip 
B1 kip 46.3 18.5 2.51 

B2 kip 32.0 18.5 1.73 

Horizontal 

Bearing 

BH1 kip 45.0 35.1 1.28 

BH2 kip 30.0 35.1 0.86 

Vertical Bearing BH1 kip 11.0 39.0 0.28 

B1, B2, BH1, and BH2 are shown in Figure 5.46 
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Table 5.10: Diaphragm to TFG connection plate and stiffener check 

Limit State Part Unit Ru  Rr  DCR 

Block Shear 

Rupture 
CP kip 57.5 406.6 0.14 

Shear 
CP kip 57.5 388.5 0.15 

S kip 57.5 423.7 0.14 

Flexure 
CP ksi 39.8 50.0 0.80 

S ksi 30.2 50.0 0.60 

CP = Connection plate  S = Stiffener 
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Figure 5.2: Parallel plane cross section view at Section A 

 

 

Figure 5.3: Parallel plane cross section view at Section B  
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Figure 5.4: Parallel plane cross section view at Section C 

 

 

Figure 5.5: Parallel plane cross section view at Section D  
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Figure 5.6: Detail A of Figure 5.2 - parallel plane cross section view of load bearing 

assembly at Section A  
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Figure 5.7: Detail B of Figure 5.3 - parallel plane cross section view of load bearing 

assembly at Section B  

 

Figure 5.8: Detail C of Figure 5.4 and Detail D of Figure 5.5 - parallel plane cross 

section view of load bearing assembly at Section C and at Section D   
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Figure 5.9: Section A-A of Figure 5.2 - longitudinal plane cross section view of load 

bearing assembly at Section A  
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Figure 5.10: Section B-B of Figure 5.3 - longitudinal plane cross section view of load 

bearing assembly at Section B  
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Figure 5.11: Section C-C of Figure 5.4 and section D-D of Figure 5.5 - longitudinal 

plane cross section view of load bearing assembly at Section C and at Section D   
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Figure 5.12: Longitudinal plane cross section view of loading rod assembly  
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Figure 5.13: Longitudinal plane cross section view of load bearing assembly at 

Section A  
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Figure 5.14: Longitudinal plane cross section view of load bearing assembly at 

Section B  
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Figure 5.15: Longitudinal plane cross section view of load bearing assembly at 

Section C and at Section D  
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Figure 5.16: Enerpac RCH-326 hollow plunger cylinder (ENERPAC, 2012) 
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Top loading beam 

 

(b) Bottom load transfer channels 

Figure 5.17: Simply supported beam and corresponding moment diagram for 

loading beam and load transfer channels  
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(a) Short rectangle 

 

 

(b) Tall rectangle 

 

Figure 5.18: Simple model for load height effects on stability  
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(a) Initial unstable position 

 

(b) Final stable position 

Figure 5.19: Stability of loading beam  
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(a) Initial stable position  (b) Initial unstable position 

 

(c) Final stable position due to accidental eccentricity 

Figure 5.20: Stability analysis with thin plate  



www.manaraa.com

210 

 

 

(d) Final position including accidential eccentricity and rotation during tests 

 

(e) Centerlines and eccentricities for final position  

Figure 5.20 (cont’d): Stability analysis with thin plate  
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(a) Initial stable position  (b) Initial unstable position 

 

(c) Final stable position due to accidental eccentricity 

Figure 5.21: Stability analysis with thick plate  

N/A 
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(d) Final position including accidential eccentricity and rotation during tests 

 

(e) Centerlines and eccentricities for final position 

Figure 5.21 (cont’d): Stability analysis with thick plate
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(a) Initial position 

 

(b) Final position 

Figure 5.22: Half-round rotation in parallel plane at loading rod assemblies  
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(a) Initial position  (b) Final position 

 

 

 

(c) Force on section  (d) Stresses on bottom of HSS 

Figure 5.23: Analysis of Section A HSS stability  
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Figure 5.24: Longitudinal plane cross section view of built-up load transfer channels 

 

Figure 5.25: Nominal flexural strength as function of unbraced length of built-up 

load transfer channels  
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(a) Longitudinal cross section view of 

south end tie plate and intermediate tie 

plates 

 
(b) Longitudinal cross section view of 

north end tie plate 

 

 

 

(c) Plan view of south end tie plate  
(d) Plan view of intermediate tie 

plates 

Figure 5.27: Tie plate designs  
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(e) Plan view of north end 

tie plate 
 

(f) Parallel plane cross section view of north end 

tie plate 

Figure 5.27 (cont’d): Tie plate designs 

 

 

Figure 5.28: General plan view of welded tie plate 
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Figure 5.29: IS 800:2007 weld guidelines for battens (tie plates) (Sai, 2008) 

 

 

 

 

(a) Plate A  (b) Plate B 

 

Figure 5.30: Plan view with dimensions of loading fixture plates with holes  
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(c) Plate C and Plate F  (d) Plate D 

 

 

 

(e) Plate E  (f) Plate H 

Figure 5.30 (cont’d): Plan view with dimensions of loading fixture plates with holes 
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Figure 5.31: Web sidesway buckling (AISC, 2005)  
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(a) Plan view 

 

(b) Parallel plane cross section view  

Figure 5.32: Load transfer channel bearing stiffeners    
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Figure 5.36: Load cell details (Garlock, 1999)  
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Figure 5.37: Plate H to loading beam welds (longitudinal plane cross section view of 

top of loading rod assembly)  

 

 

Figure 5.38: Half-round rotation to determine PLH hole size 
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Figure 5.39: FBD and corresponding moment diagram for analysis of PLH  
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Figure 5.41: Diaphragm under applied loads, shear, and moment diagrams 

 

Figure 5.42: Diaphragm-TFG interaction shear and moment diagrams  
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Figure 5.43: Existing welds of transverse stiffener to G2 at Section A  

 

Figure 5.44: Forces on welds of transverse stiffener to G2 at Section A   
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Figure 5.45: Connection plate with applied forces acting on right bolt group 
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(a) Demand on B1 and BH1  (b) Demand on B2 and BH2 

Figure 5.46: Demand on bolts and bolt holes  
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CHAPTER 6: SUMMARY, CONCLUSIONS, AND FUTURE WORK 

6.1. Summary 

An innovative curved steel bridge girder, called a curved tubular flange girder 

(TFG), is being studied. The I-shaped TFG has a cross section with a rectangular hollow 

steel tube as the top flange and a flat steel plate as the bottom flange. The closed cross 

section of the tube greatly increases the torsional stiffness of the girder and the I-shape is 

efficient in flexure and allows for easy fabrication and erection. A 2/3-scale test specimen 

with two horizontally curved TFGs braced by three internal diaphragms and two end 

diaphragms has been designed, fabricated, and erected. The test specimen was designed 

using the AASHTO Load and Resistance Factor Design (LRFD) Bridge Design 

Specifications (2005) and design recommendations by Dong (2008) for TFGs. This thesis 

presents the test setup and the FE analyses of the loading and the kinematics of the test 

specimen response. This thesis also describes how the FE results were used to design the 

loading fixtures for the test.  

First, information was presented on the test setup. The location and layout of the 

test setup were described and the geometry of the test specimen was described. The 

design of the two-girder test specimen was discussed. Information was provided on the 

design of the TFGs, the TFG stiffeners, the diaphragms, the connections of the 

diaphragms to the TFGs, the bearing and the footings, and the ground anchor rods of the 

test setup. 
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Second, a study of load patterns applied to the test specimen and the resulting 

displacements was completed. FE models were used to study various load cases to verify 

that 14 concentrated loads arranged in pairs (one on each girder) could produce similar 

load effects at mid-span as a uniformly distributed load over the span. This study varied 

the load pattern using combinations of distributed pressure loads, distributed line loads, 

patch pressure loads, and point loads. The effect of boundary conditions on the FE results 

was studied. The displacements and rotations of the test specimen and the loading 

fixtures required for the design of the loading fixtures were discussed. 

Third, the design of the loading fixtures was discussed. The connections between 

the diaphragms and the TFGs were evaluated for the expected maximum load capacity of 

the test specimen. The loading fixtures were designed to simulate deck placement loading 

conditions and to account for the expected displacements of the test specimen and the 

loading fixtures. Four different loading fixture types were designed to accommodate the 

geometry of the test setup and the expected displacements of the test specimen. The 

designs satisfied the maximum load capacity of the test specimen, and specifications 

from the AISC Steel Construction Manual (2005) and AASHTO LRFD Bridge Design 

Specifications (2005).  

The loading fixtures use hydraulic jacks to pull up on a pair of channels laced 

together with tie plates and to pull down on a wide flange beam bent about its weak axis 

to load the test specimen. This is done using a series of steel rods, plates, half-rounds, and 

other parts. The loads applied to the load transfer channels are resisted by ground anchor 

rods. The load transfer channels are braced at the ends by concrete blocks.  
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The loading fixtures are designed to be stronger than the required loads and to 

maintain stability of the loads. In addition, the loading fixtures are designed to not 

restrain the response of the test specimen as it deflects under load. The half-rounds, 

neoprene pads, and other details of the loading fixture should act as kinematic releases to 

allow the test specimen to rotate independently from the loading fixtures. Teflon between 

the load transfer channels and the bottom plate of the loading rod assemblies should 

enable the loading rod assemblies to displace laterally. The loading fixtures are designed 

to displace laterally in the parallel plane and not collide with the north ground anchor 

rods.  

6.2. Conclusions 

The following conclusions can be made from the studies of the FE models of the 

test specimen, and the design calculations: 

 Fourteen concentrated loads can be used to simulate the effects of a 

uniformly distributed load over the span of the test specimen. The 

relationship between the total applied load and the flexural capacity at 

mid-span will be maintained and the displacements of the test specimen 

should be similar. 

 Changing the boundary conditions at one end of the FE model from two 

pins (one for each girder) to a pin and a roller had a small influence on the 

FE results.  
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 The test to determine the load capacity of the test specimen will not be 

artificially restrained by the loading fixtures. 

 The components of the loading fixtures will be able to support the applied 

loads and move through the required displacements required to push the 

test specimen beyond the maximum load capacity. 

 The concrete blocks will properly brace the ends of the built-up load 

transfer channels of the loading fixture. 

 The connections between the diaphragms and the TFGs will not fail before 

the maximum load capacity of the test specimen is reached.  

6.3. Future Work 

 The remaining work for the tests is as follows: 

 Fabrication and assembly of the loading fixtures is needed.  

 A final plan for the hydraulics of the loading fixtures is needed. 

 An instrumentation plan for the tests is needed. This plan should include 

the type (e.g., strain gauges, inclinometers), the number, and the location 

of the instruments that will be used to monitor the responses of the test 

specimen and the loading fixtures.  

 The test specimen needs to be tested for the Constructability limit state 

load and the maximum load capacity. 
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 The displacements of the loading fixtures during the tests should be 

observed and noted to determine how they compare with the expected 

displacements.  

 The displacements of the loading rod assemblies need to be noted during 

the tests, especially the circumferential displacements and rotations in the 

circumferential plane at Section D. The loading rod assemblies should 

remain vertical; any inclination should be documented. 

 Any lateral displacement in the parallel plane of the load transfer channels 

should be recorded. 

 Validation of the FE model results with the responses of the test specimen 

should be completed after the tests. 

The following recommendations are made for future TFG research: 

 Tests and comparisons with FE analyses of curved TFG systems for the 

Strength I and Service II limit states should be made. 

 Studies of TFGs should be made for other limit states identified in the 

AASHTO LRFD Bridge Design Specifications (2005).  
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